
The theory of quantum mechanics was originally developed to account 
for the observed behaviour of electrons in atoms. More than 80 years later, 
it is being used to explain the behaviour of superconducting circuits that 
can be hundreds of nanometres wide and can contain trillions of elec-
trons. The quantum nature of these circuits is observable because they can 
be engineered to be isolated from the electrical environment and are thus 
represented by a single degree of freedom. Significant coupling to other 
degrees of freedom causes rapid decoherence, destroying the quantum 
state of the circuit so that it behaves classically. Unlike atoms, these circuits 
can be designed and constructed to tailor their characteristic frequen-
cies, as well as other parameters. These frequencies can be controlled by 
adjusting an external parameter, and the coupling energy between two 
quantum bits (qubits) can be turned on and off at will. 

Superconducting quantum circuits are the subject of intense research 
at present, in part because they have opened up a new area of funda-
mental science and in part because of their long-term potential for 
quantum computing. In this review, we begin with a brief discussion 
of superconductivity and two of the superconducting properties that 
underlie how qubits operate: flux quantization and Josephson tunnel-
ling. The three fundamental types of superconducting qubit — flux, 
charge and phase — are then described. This is followed by a review of 
the real-time, quantum-coherent dynamics of qubits and the limita-
tions imposed by relaxation and decoherence, as well as the mechanisms 
of decoherence. We then discuss schemes for controlling the coupling 
between two qubits, a feature that greatly simplifies the implementa-
tion of proposed quantum-computing architectures. And we finish by 
discussing quantum optics on a chip, a new research direction in which 
the electromagnetic fields associated with control and read-out signals 
are treated quantum mechanically. 

Flux quantization and Josephson tunnelling
Why do superconductors enable atomic-scale phenomena to be 
observed at the macroscopic level? The reason, as explained elegantly 
by the theory of Bardeen, Cooper and Schrieffer1, is that in a given 
superconductor all of the Cooper pairs of electrons (which have 
charge 2e, mass 2me and spin zero, and are responsible for carrying a 
supercurrent) are condensed into a single macroscopic state described 
by a wavefunction Ψ(r, t) (where r is the spatial variable and t is time.) 
Like all quantum-mechanical wavefunctions, Ψ(r, t) can be written as 
!Ψ(r, t)! exp[iϕ(r, t)] (where i = √−1): that is, as the product of an ampli-
tude and a factor involving the phase ϕ. Furthermore, in ‘conventional’ 

superconductors such as Nb, Pb and Al, the quasiparticles (electron-
like and hole-like excitations) are separated in energy from the con-
densate2 by an energy gap ∆s(T) = 1.76kBTc (where kB is the Boltzmann 
constant and Tc is the superconducting transition temperature). Thus, 
at temperatures T << Tc, the density of quasiparticles becomes exponen-
tially small, as does the intrinsic dissipation for frequencies of less than 
2∆s(0)/h (where h is Planck’s constant) — roughly 1011 Hz for Al.

The macroscopic wavefunction leads to two phenomena that are essen-
tial for qubits. The first phenomenon is flux quantization. When a closed 
ring is cooled through its superconducting transition temperature in a 
magnetic field and the field is then switched off, the magnetic flux Φ in the 
ring — maintained by a circulating supercurrent — is quantized2 in integer 
values of the flux quantum Φ0 ≡ h/2e ≈ 2.07 × 10−15 T m2. This quantization 
arises from the requirement that Ψ(r, t) be single valued. The second phen-
omenon is Josephson tunnelling2. A Josephson junction consists of two 
superconductors separated by an insulating barrier of appropriate thick-
ness, typically 2–3 nm, through which Cooper pairs can tunnel coherently. 
Brian Josephson showed that the supercurrent I through the barrier is 
related to the gauge-invariant phase difference δ(t) between the phases of 
the two superconductors by the current–phase relationship

 I = I0 sinδ (1)

Here I0 is the maximum supercurrent that the junction can sustain (that 
is, the critical current). This phase difference is an electrodynamic vari-
able that, in the presence of a potential difference V between the super-
conductors, evolves in time as 

 #δ
.
 = #ω = 2eV (2)

where # = h/2π and ω is the angular frequency at which the supercurrent 
oscillates. The dynamical behaviour of Josephson junctions is described 
in Box 1.

The variables have, so far, been regarded as being classical, but to show 
quantum-mechanical behaviour, these variables must be replaced by oper-
ators. The two relevant operators are that for δ, which is associated with 
the Josephson coupling energy Ej ≡ I0Φ0/2π, and that for the Cooper-pair 
number difference N across the capacitance, which is associated with the 
charging energy Ec ≡ (2e)2/2C, where C is the junction capacitance.

Furthermore — just like the familiar position and momentum opera-
tors x and px — the operators for δ and for the charge on the capacitor Q 
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are canonically conjugate, as expressed by the commutator bracket 
[δ, Q] = i2e. The fact that δ and Q are subject to Heisenberg’s uncertainty 
principle has far-reaching consequences. On the one hand, when Ej >> Ec, 
δ is well defined, and Q has large quantum fluctuations; therefore, the 
Josephson behaviour of the junction dominates. On the other hand, when 
Ej << Ec, N is well defined, and δ has large quantum fluctuations; there-
fore, the charging behaviour of the capacitor dominates. Using these ideas, 
the parameters of superconducting quantum circuits can be designed3.

The first evidence of quantum behaviour in a Josephson junction 
came from experiments in which macroscopic quantum tunnelling 
was found to occur and energy levels were shown to be quantized. 
In macro scopic quantum tunnelling4,5, the junction tunnels from the 
ground state !0〉 (Box 1 figure), when I < I0, through the potential barrier 
that separates it from its neighbouring energy well, which is at a lower 
energy. Then, the particle runs freely down the washboard potential, 

generating a voltage 2∆s/e that is readily detected. These results5 were 
found to be in strong agreement with theory 6. Energy quantization7

 
was 

found in the initial well by irradiating the junction with microwaves. The 
escape rate from the zero-voltage state was increased when the micro-
wave frequency fm corresponded to the energy difference between two 
adjacent energy levels. A crucial point is that the anharmonic nature 
of the well, which results from the nonlinear inductance of Josephson 
junctions (equation (6), Box 1), causes the energy spacing to decrease 
as the quantum number progressively increases, so each transition has 
a distinct frequency. If the well were harmonic, the energy spacings 
would be identical, and the quantum case would not be distinguishable 
from the classical case.

These experiments showed unequivocally that δ is a quantum vari-
able. The next step in the demonstration of macroscopic quantum 
physics was to implement devices showing the superposition of two 
quantum states !Ψ1〉 and !Ψ2〉 in the form !Ψ〉 = α!Ψ1〉 + β!Ψ2〉, as first 
proposed by Anthony Leggett8 in the 1980s in his discussion of macro-
scopic quantum coherence in superconducting devices. In 1997, 
Yasunobu Nakamura et al.9 carried out the first such experiment on 
a charge qubit, showing spectroscopically the superposition of the 
Cooper-pair states !n〉 and !n + 1〉, where the integer n is the quantum 
number specifying the number of Cooper pairs. Subsequently, in 2000, 
Jonathan Friedman et al.10 and Caspar van der Wal et al.11 showed the 
superposition of states in a flux qubit. A flux qubit consists of a super-
conducting loop interrupted by one10 or three11 Josephson junctions. 
The two quantum states are flux pointing up and flux pointing down 
or, equivalently, supercurrent flowing in an anticlockwise direction 
and supercurrent flowing in a clockwise direction. In 2002, Denis Vion 
et al.12 described ‘quantronium’, a qubit in which two small junctions are 
connected by a superconducting island, involving the superposition of 
the Cooper-pair states !n〉 and !n + 1〉. Also in 2002, John Martinis et al.13 
demonstrated a phase qubit, a reinvention of the device used earlier 
to observe quantized energy levels7. The relevant quantum states are 
the ground state and the first excited state. Some of the experimental 
difficulties encountered when operating superconducting qubits are 
described in Box 2.

Flux qubits
A flux qubit, as indicated earlier, consists of a superconducting loop 
interrupted by one10 or three11 Josephson junctions (Fig. 1a). Although 
both designs function similarly, we focus on the three-junction design, 
which has been adopted more widely. In this device, one junction is 
smaller in area and thus has a smaller critical current than the other two, 
which function to increase the inductance of the loop. The small junc-
tion has a large value for Ej/Ec, typically 50, so the phase difference δ (or, 
equivalently, the magnetic flux Φ in the loop) is the relevant quantum 
variable. The two quantum states are magnetic flux pointing up !    〉 
and magnetic flux pointing down !    〉 or, equivalently, anticlockwise 
qubit supercurrent Iq circulating in the loop and clockwise supercurrent. 
The qubit is represented by a double-well potential, which is generally 
asymmetrical. The two states are coupled by the quantum-mechanical 
tunnelling of δ through the barrier separating the wells, giving rise to 
the superposition of the two basis states 

 !Ψ〉 = α!    〉 ± β!    〉 (3)

When the externally applied magnetic flux Φe = Φ0/2, the double-well 
potential becomes symmetrical (Fig. 1b), and the two eigenfunctions 
become symmetrical and antisymmetrical superpositions of the two 
basis states, with α = β = 1/√2. At this degeneracy point, the splitting of 
the energy levels of the ground state !0〉 and the first excited state !1〉 is ∆; 
away from the degeneracy point, the energy difference is

 ν = (∆2 + ε2)1/2 (4)

where ε = 2Iq(Φe − Φ0/2) (Fig. 1c). The probabilities of observing the 
states !    〉 and !    〉 in the ground and first excited states as a function 

Equations (1) and (2) contain the crucial information that the Josephson 
junction is a dissipationless device with a nonlinear inductance. It is 
these unique features that make the junction the primitive building 
block of all superconducting qubits. 

The nonlinear inductance is easily deduced by noting that the time 
derivative of equation (1) yields I

.
 = (I0cosδ)δ

.
 = (I0cosδ)ω = V(2eI0/#)cosδ 

from equation (2). Invoking Faraday’s law V = −LI
.
 (where L is the 

inductance) then leads to the Josephson inductance

 !Lj! = Φ0/(2πI0cosδ) = Φ0/2π(I0
2 − I2)1/2 (where I < I0) (6)

The Josephson junction, denoted by an X in panel a of the figure, has 
an intrinsic capacitance C; this combination is often denoted by an 
X in a box. I0 denotes the critical current. It is immediately apparent 
from equation (6) that the junction is also a nonlinear oscillator with a 
resonant angular frequency ωp(I) = (LjC)−1/2 = (2πI0/Φ0C)1/2/(1 − I2/I0

2)1/4.
Considerable insight into the dynamics of a Josephson junction 

can be gleaned by considering the flow of a current J through the 
junction: J = I0sinδ + CV

.
. Writing V

.
 = (#/2e)δ

..
 and rearranging this 

yields (#C/2e)δ
..
 = I − I0sinδ = −(2e/#)∂U/∂δ. U ≡ −(Φ0/2π)∂U/∂δ is 

the potential of a tilted washboard for a particle of mass #C/2e (as 
illustrated in panel b of the figure). In the absence of fluctuations, 
for I < I0 the particle remains trapped in one of the potential wells; 
classically, it oscillates in the well at the plasma oscillation frequency 
ωp(I)/2π. Thus, 〈δ

.
〉 = 0, and the junction is in the zero-voltage state; in 

the quantum picture, the energy in the well is quantized, as shown in the 
inset (figure, panel b). By contrast, when I is increased so that I > I0, the 
particle runs down the washboard, 〈δ

.
〉 > 0, and there is a voltage across 

the junction. When I is subsequently reduced so that I < I0, the particle 
will continue to propagate until I is close to 0. Thus, the current–voltage 
characteristic is hysteretic.

Box 1 | The Josephson junction as a nonlinear circuit element
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of Φe are shown in Fig. 1d. At the degeneracy point, the probability of 
observing either state is ½. As Φe is reduced, the probability of observing 
!    〉 increases while that of observing !    〉 decreases.

The first observation of quantum superposition in a flux qubit was 
made spectroscopically. The state of the flux qubit is measured with 
a d.c. superconducting quantum interference device (SQUID)14. This 
device consists of two Josephson junctions, each with critical current I0, 
connected in parallel on a superconducting loop of inductance L. The 
critical current of the SQUID Ic(Φs) is periodic in the externally applied 
magnetic flux Φs with period Φ0. In the limit βL ≡ 2LI0/Φ0 << 1 in which 
the Josephson inductance dominates the geometrical inductance, the 
critical current for Φs = (m + ½)Φ0 (m is an integer) is reduced to almost 
zero, and the flux dependence of the critical current takes the approxi-
mate form14 Ic(Φs) ≈ 2I0!cos(πΦs/Φ0)!. Thus, by biasing the SQUID with a 
constant magnetic flux near Φ0/2, and measuring the critical current, the 
changes in flux produced by a nearby qubit can be measured with high 
sensitivity. In most experiments with qubits, a pulse of current is applied 
to the SQUID, which either remains in the zero-voltage state or makes 
a transition to the voltage state, producing a voltage 2∆s/e. Because its 
current–voltage characteristic is hysteretic, the SQUID remains at this 
voltage until the current bias has been removed, allowing researchers 
to determine whether the SQUID has switched. For sufficiently small 
current pulses, the probability of the SQUID switching is zero, whereas 
the probability is one for sufficiently large pulses. The switching event 
is a stochastic process and needs to be repeated many times for the flux 
in the SQUID to be measured accurately.

The first step in spectroscopic observation of quantum superposition is 
to determine the height of the current pulse at which the SQUID switches 
— with, for example, a probability of ½ — as a function of Φe over a narrow 
range (perhaps ± 5mΦ0). Subsequently, a pulse of microwave flux is applied 
at frequency fm, which is of sufficient amplitude and duration to equalize 
the populations of the ground state and first excited state when the energy-
level splitting difference ν = hfm. Assuming that !    〉 is measured, then, on 
resonance, there will be a peak in the switching probability for Φe < Φ0/2 
and a corresponding dip for Φe > Φ0/2. An example of these results11,15 is 
shown in Fig. 2. The configuration of the qubit and the SQUID is shown 
in Fig. 2a, and the peaks and dips in the amplitude of the switching current 

Experiments on superconducting qubits are challenging. Most 
superconducting qubits are created by using electron-beam 
lithography, need millikelvin temperatures and an ultralow-noise 
environment to operate, and can be studied only by using very sensitive 
measurement techniques. 

Superconducting qubits generally require Josephson junctions 
with dimensions of the order of 0.1 × 0.1 µm2 — corresponding to a 
self-capacitance of about 1 fF — and are patterned by using shadow 
evaporation and electron-beam lithography79; an exception is the phase 
qubit, which typically has a junction of 1 × 1 µm2

 
and can be patterned 

photolithographically. The Josephson junctions are usually Al–AlxOy–Al 
(where x ≤ 2 and y ≤ 3), and the oxidation must be controlled to yield 
relatively precise values of Ej and Ec. Because qubit frequencies are 
usually 5–10 GHz (which corresponds to 0.25–0.5 K), the circuits are 
operated in dilution refrigerators, typically at temperatures of 
10–30 mK, to minimize thermal population of the upper state. 

Great efforts are made to attenuate external electrical and magnetic 
noise. The experiment is invariably enclosed in a Faraday cage — either 
a shielded room or the metal Dewar of the refrigerator with a contiguous 
metal box on top. The electrical leads that are connected to the qubits 
and their read-out devices are heavily filtered or attenuated. For 
example, lines carrying quasistatic bias currents usually have multiple 
low-pass filters at the various temperature stages of the refrigerator. 
These include both inductor–capacitor and resistor–capacitor filters that 
operate up to a few hundred megahertz, as well as wires running through 
copper powder, which results in substantial loss at higher frequencies5. 
The overall attenuation is typically 200 dB. Finally, the read-out process 
for probing a quantum system is very delicate.

Box 2 | Experimental issues with superconducting qubits

Figure 1 | The theory underlying flux qubits. a, Flux qubits consist of a 
superconducting loop interrupted by either one or three (shown) Josephson 
junctions. The two quantum states are magnetic flux Φ pointing up !    〉 
and Φ pointing down !    〉 or, equivalently, supercurrent Iq circulating in the 
loop anticlockwise and Iq circulating clockwise. b, The double-well potential 
(black) versus total flux Φ contained in a flux qubit is shown. The two wells 
are symmetrical when the externally applied magnetic flux Φe is (n + ½)Φ0, 
where n is an integer (n = 0 in this case). The coloured curves are the 
eigenfunctions (probability amplitudes) for the ground state (symmetrical; 
red) and first excited state (antisymmetrical; blue). c, The energy E of the 
two superpositions states in b versus the energy bias ε = 2Iq(Φe − Φ0/2) is 
shown. The diagonal dashed black lines show the classical energies. The 
energy-level splitting is Δ at the degeneracy point, ε = 0, and is ν for ε ≠ 0. 
d, The probabilities of the qubit flux pointing up (green) or down (yellow) 
in the ground state versus applied flux are shown.
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versus applied flux are shown in Fig. 2b for a succession of microwave fre-
quencies. As expected, the difference in the applied flux at which the peaks 
and dips appear, 2∆Φres, becomes greater as the microwave frequency 
increases. The microwave frequency versus ∆Φres is shown in Fig. 2c. 
The data have been fitted to equation (4) with Iq = (½)dν/dΦe in the limit 
ν >> ∆, using ∆ as a fitting parameter. The data reveal the existence of an 
anticrossing (that is, an avoided crossing) at Φe = Φ0/2.

Charge qubits
A charge qubit (also known as a Cooper-pair box) is shown in Fig. 3a, b. 
The key component is a tiny superconducting island that is small 
enough that the electrostatic charging energy required to place a charge 

of 2e on the island at zero voltage, (2e)2/2CΣ, is much greater than the 
thermal energy kBT (where CΣ = Cg + Cj is the total capacitance). For 
T = 1 K, this requires CΣ to be much less than 1 fF. The Cooper-pair box 
is connected to ground by a gate capacitance Cg in series with a potential 
Vg and by a small Josephson junction with Ej << Ec. Given their weak 
connection to the ‘outside world’, the number of Cooper pairs on the 
island is a discrete variable n. The qubit states correspond to adjacent 
Cooper-pair number states !n〉 and !n + 1〉.

To understand how to control a single Cooper pair, it is useful to first 
examine the electrostatic problem with an infinite junction resistance 
(Ej = 0). The total electrostatic energy of the circuit is Ech = (2e2/Cg)(n − ng)2, 
where ng = CgVg/2e (representing the gate voltage in terms of the gate 
charge, namely the polarization charge that the voltage induces on the 
gate capacitor). Although n is an integer, ng is a continuous variable. Ech 
versus ng is shown in Fig. 3c for several values of n. It should be noted that 
the curves for n and n + 1 cross at ng = n + ½, the charge degeneracy point. 
At this point, the gate polarization corresponds to half a Cooper pair for 
both charge basis states.

By restoring the Josephson coupling to a small value, the behaviour 
close to these crossing points is modified. The Josephson junction 
allows Cooper pairs to tunnel onto the island one by one. The result-
ant coupling between neighbouring charge states !n〉 and !n + 1〉 makes 
the quantum superposition of charge eigenstates analogous to the 
superposition of flux states in equation (3) (identifying !    〉 = !n〉 and 
!    〉 = !n + 1〉). The next excited charge state is higher in energy by Ec 
and can safely be neglected. At the charge degeneracy point, where the 
Josephson coupling produces an avoided crossing, the symmetrical and 
antisymmetrical superpositions are split by an energy Ej. By contrast, 
far from this point, Ec >> Ej, and the eigenstates are very close to being 
charge states. Again, the energy level structure is analogous to that of 
flux qubits, with ∆ replaced with Ej and ε with Ec × (ng − n − ½). Similarly, 
the probabilities of measuring the ground state or excited state depend 
on the gate voltage rather than the applied flux. 

To make the qubit fully tunable, the Josephson junction is usually 
replaced by a d.c. SQUID with low inductance (βL << 1). Ej is then 
adjusted by applying the appropriate magnetic flux, which is kept con-
stant throughout the subsequent measurements.

The read-out of a charge qubit involves detecting the charge on the 
island to a much greater accuracy than 2e. This is accomplished by using 
a single-electron transistor (SET), a sensitive electrometer16. The SET 
(Fig. 3d), also based on a tiny island, is connected to two superconduct-
ing leads by two Josephson junctions. When the voltages across both 
junctions are close to the degeneracy point (ng = n + ½), charges cross 
the junctions to produce a net current flow through the SET. Thus, the 
current near the degeneracy points depends strongly on the gate volt-
age (Fig. 3c). Capacitively coupling the Cooper-pair-box island to the 
SET island makes a contribution to the SET gate voltage so that the SET 
current strongly depends on the Cooper-pair-box state. This scheme 
converts the measurement of charge into a measurement of charge trans-
port through a SET. In fact, for small Josephson junctions, this charge 
transport is usually dissipative, because the phase coherence is destroyed 
by environmental fluctuations. Thus, the read-out actually involves 
measuring the resistance of the SET, which depends on the state of the 
Cooper-pair box. The preferred read-out device is a radio-frequency 
SET17, in which a SET is embedded in a resonant circuit. Thus, the Q 
of the resonant circuit is determined by the resistance of the SET and 
ultimately by the charge on the Cooper-pair box. A pulse of microwaves 
slightly detuned from the resonant frequency is applied to the radio-
frequency SET, and the phase of the reflected signal enables the state of 
the qubit to be determined. 

Many of the initial studies of superconducting qubits involved charge 
qubits. That crossing is avoided at the degeneracy point was first shown 
spectroscopically by studying a charge qubit9, and charge measurements 
revealed the continuous, quantum-rounded form of the transition 
between quantum states18. The coherent oscillations that occur with 
time at this avoided energy-level crossing were also first discovered by 
studying a charge qubit19.

Figure 2 | Experimental properties of flux qubits. a, The configuration of the 
original three-junction flux qubit is shown. Arrows indicate the current flow 
in the two qubit states (green denotes !    〉, and yellow denotes !    〉). Scale bar, 
3 μm. (Image courtesy of C. H. van der Wal, Rijksuniversiteit Groningen, 
the Netherlands). b, Radiation of microwave frequency fm induces resonant 
peaks and dips in the switching current Isw with respect to the externally 
applied magnetic flux Φe normalized to the flux quantum Φ0. Frequencies 
range from 9.711 GHz to 0.850 GHz. Tick marks on the y axis show steps 
of 0.4 nA. (Panel reproduced, with permission, from ref. 15.) c, Microwave 
frequency fm is plotted against half of the separation in magnetic flux, 
∆Φres, between the peak and the dip at each frequency. The line is a linear 
fit through the data at high frequencies and represents the classical energy. 
The inset is a magnified view of the lower part of the graph; the curved line 
in the inset is a fit to equation (4). The deviation of the data points from the 
straight line demonstrates quantum coherence of the !    〉 and !    〉 flux states. 
(Panel reproduced, with permission, from ref. 15.)
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Cooper-pair boxes are particularly sensitive to low-frequency noise 
from electrons moving among defects (see the section ‘Decoherence’) 
and can show sudden large jumps in ng. The development of more 
advanced charge qubits such as the transmon20 and quantronium12 has 
greatly ameliorated this problem. The transmon is a small Cooper-
pair box that is made relatively insensitive to charge by shunting the 
Josephson junction with a large external capacitor to increase Ec and by 
increasing the gate capacitor to the same size. Consequently, the energy 
bands of the type shown in Fig. 3c are almost flat, and the eigenstates are 
a combination of many Cooper-pair-box charge states. For reasons that 
will be discussed later (see the section ‘Decoherence’), the transmon is 
thus insensitive to low-frequency charge noise at all operating points. 
At the same time, the large gate capacitor provides strong coupling to 
external microwaves even at the level of a single photon, greatly increas-
ing the coupling for circuit quantum electrodynamics (QED) (see the 
section ‘Quantum optics on a chip’).

The principle by which quantronium operates is shown in Fig. 4a, 
and an actual circuit is shown in Fig. 4b. The Cooper-pair box involves 
two Josephson junctions, with a capacitance Cg connected to the island 
separating them. The two junctions are connected across a third, larger, 
junction, with a higher critical current, to form a closed superconduct-
ing circuit to which a magnetic flux Φe is applied. The key to eliminating 
the effects of low-frequency charge and flux noise is to maintain the 
qubit at the double degeneracy point at which the two qubit states are 
(to first order) insensitive to these noise sources. To achieve insensi-
tivity to charge noise, the qubit is operated at ng = ½, where the energy 
levels have zero slope and the energy-level splitting is Ej (Fig. 3c). 
Insensitivity to flux noise is achieved by applying an integer number 
of half-flux quanta to the loop. The success of this optimum working 
point has been elegantly shown experimentally21. The insensitivity to 
both flux and charge implies, however, that the two states of the qubit 
cannot be distinguished at the double degeneracy point. To measure 
the qubit state, a current pulse that moves the qubit away from the flux 
degeneracy point is applied to the loop, and this produces a clockwise 
or anticlockwise current in the loop, depending on the state of the qubit. 
The direction of the current is determined by the third (read-out) junc-
tion: the circulating current either adds to or subtracts from the applied 
current pulse, so the read-out junction switches out of the zero-volt-
age state at a slightly lower or slightly higher value of the bias current, 
respectively. Thus, the state of the qubit can be inferred by measur-
ing the switching currents. With the advent of quantronium, much 
longer relaxation and decoherence times can be achieved than with a 
conventional Cooper-pair box.

Although this switching read-out scheme is efficient, it has two 
major drawbacks. First, the resultant high level of dissipation destroys 
the quantum state of the qubit, making sequential measurements of 
the state impossible. Second, the temperature of the read-out junction 
and substrate increase because of the energy that is deposited while the 
SQUID is in the voltage state — typically for 1 µs — and the equilibrium 
is not restored for ~1 ms. This limits the rate at which measurements can 
be made to ~1 kHz, resulting in long data-acquisition times.

These drawbacks have been overcome by the introduction of the 
Josephson bifurcation amplifier (JBA)22, a particularly powerful read-
out device in which there is no dissipation because the junction remains 
in the zero-voltage state (Fig. 4c). The JBA exploits the nonlinearity of 
the Josephson junction when a capacitor is connected across it, resulting 
in the formation of a resonant (or tank) circuit. When small-amplitude 
microwave pulses are applied to the resonant circuit, the amplitude and 
phase of the reflected signal are detected, with the signal strength boosted 
by a cryogenic amplifier. From this measurement, the resonant frequency 
of the tank circuit can be determined, then the inductance of the junction 
— which depends on the current flowing through it — and, finally, the 
state of the quantronium. For larger-amplitude microwaves, however, the 
behaviour of the circuit is strongly nonlinear, with the resonance frequency 
decreasing as the amplitude increases. In particular, strong driving at fre-
quencies slightly below the plasma frequency leads to a bistability: a weak, 
off-resonance lower branch during which the particle does not explore the 
nonlinearity, and a high-amplitude response at which frequency matches 
the driving frequency (Fig. 4d). The two qubit states can be distinguished 
by choosing driving frequencies and currents that cause the JBA to switch 
to one response or the other, depending on the qubit state. This technique 
is extremely fast and, even though it is based on a switching process, it 
never drives the junction into the voltage state. Furthermore, the JBA 
remains in the same state after the measurement has been made.

The JBA has been shown to approach the quantum non-demolition 
(QND) limit22. This limit is reached when the perturbation of the quan-
tum state during the measurement does not go beyond that required by 
the measurement postulate of quantum mechanics, so repeated meas-
urements of the same eigenstate lead to the same outcome23. Reaching 
the QND limit is highly desirable for quantum computing.

A similar scheme that approaches the QND limit has been imp-
lemented for the flux qubit, with the single Josephson junction replaced 
by a read-out SQUID24. Dispersive read-out for a flux qubit has also 
been achieved by inductively coupling a flux qubit to the inductor of a 
resonant circuit and then measuring the flux state from the shift in the 
resonance frequency 25.

Figure 3 | Charge qubits. a, A single Cooper-pair-box (SCB) circuit is 
shown. The superconducting island is depicted in brown and the junction 
in blue. Ej and Cj are the Josephson coupling energy and self-capacitance, 
respectively, and n is the number of Cooper pairs on the island, which 
is coupled to a voltage source with voltage Vg by way of a capacitor with 
capacitance Cg. (Panel reproduced, with permission, from ref. 28.) 
b, A micrograph of a Cooper-pair box coupled to a single-electron 
transistor (SET) is shown. Scale bar, 1 μm. (Panel reproduced, with 
permission, from ref. 78.) c, Black curves show the energy of the Cooper-
pair box as a function of the scaled gate voltage ng = CgVg/2e for different 
numbers (n) of excess Cooper pairs on the island. The parabola on the 
far left corresponds to n = 0 and the central parabola to n = 1. Dashed 

lines indicate the contribution of the charging energy Ech(n, ng) alone. The 
energy-level splitting at ng = ½ is Ej. Red curves show the current I through 
the SET as a function of ng. Transport is possible at the charge degeneracy 
points, where the gate strongly modulates the current. (Panel reproduced, 
with permission, from ref. 28.) d, A charge qubit with two junctions (left) 
coupled to a SET biased to a transport voltage Vtr (right) is shown. The 
critical current of the junctions coupled to the island is adjusted by means 
of an externally applied magnetic flux Фe. The gate of the SET is coupled to 
an externally controlled charge induced on the capacitor with capacitance 
Cg 

SET by the voltage Vg 
SET, as well as to the qubit charge by way of the 

interaction capacitance Cint. (Panel reproduced, with permission, from 
ref. 28.)
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Phase qubits
In essence, a phase qubit13 consists of a single current-biased Josephson 
junction (Box 1 figure). For a bias current I just below the critical 
current I0, the anharmonic potential is approximately cubic, and the 
energy-level spacing becomes progressively smaller as the quantum 
number n increases. As I approaches I0, the (classical) plasma oscillation 
frequency, ωp(I) = 21/4(2πI0/Φ0C)1/2(1 − I/I0)1/4, decreases slowly, while 
the potential barrier height, ∆U(I) = (2√2 I0Φ0/3π)(1 − I/I0)3/2, decreases 
rapidly. Thus, the probability of escape from the state !n〉 by macroscopic 
quantum tunnelling increases exponentially as n increases. The qubit 
involves transitions between the ground state !0〉 and the first excited 
state !1〉. To measure the quantum state of the qubit, a microwave pulse 
is applied with frequency (E2 − E1)/h. If, on the one hand, the qubit is 
in the state !1〉, then the pulse excites a transition to the state !2〉, from 
which macroscopic quantum tunnelling causes the junction to switch 
to the voltage state. If, on the other hand, the junction is initially in the 
state !0〉, then no such transition occurs. Operation of the phase qubit 
depends crucially on the anharmonicity of the well potential, which 
ensures that E2 − E1 < E1 − E0.

The first phase qubit that was designed involved a 10 × 10 µm2 Nb–
AlxOy–Nb tunnel junction (where x ≤ 2 and y ≤ 3), which was created 
photolithographically. To measure the occupation probability p1 of the state 
!1〉, Martinis et al.13 applied a long microwave pulse of angular frequency 
ω10 = (E1 − E0)/#, followed by a read-out pulse of frequency ω21 = (E2 − E1)/# 
(Fig. 5a). If the state !1〉 is occupied, the second pulse switches the junction 
to the voltage state, which is detected by a low-noise amplifier. If, con-
versely, the junction is in the state !0〉, the probability of switching is very 
small. As the power P10 in the first pulse is increased, the probability of !1〉 

being occupied increases until it reaches a plateau at 0.5. The results of 
the measurement are shown in Fig. 5a, where p

1
 is defined as the ratio 

of the number of trials in which switching to the voltage state occurs to the 
total number of trials. As expected, p

1
 approaches 0.5 as P10 increases.

In early designs of phase qubits, the junction switched to the voltage 
state, resulting in energy dissipation. In a later, improved, design26, the 
qubits remain in the zero-voltage state (Fig. 5b, c). The qubit junction 
is embedded in a superconducting loop that is inductively coupled to 
a SQUID and to a line through which static and pulsed currents can 
be passed. With appropriately chosen parameters, the potential energy 
of the qubit displays the two asymmetrical wells shown in Fig. 5c. The 
states !0〉 and !1〉 in the left well are the qubit states; their energy separa-
tion and the depth of the well can be controlled by varying the flux in the 
loop. To read out the state of the phase qubit, a short adiabatic pulse that 
reduces the depth ∆U of the qubit potential well is applied to the flux bias 
line. If the qubit is in the state !1〉, it tunnels rapidly into the right well; 
in the state !0〉, no tunnelling occurs. Depending on whether tunnelling 
occurs, the flux in the qubit loop differs by a single flux quantum, which 
can easily be detected subsequently by the read-out SQUID. This scheme 
enables the state of the qubit to be measured rapidly, typically in 5 ns, 
which is still adiabatic (slow) on the timescale of transitions between the 
qubit states. Subsequent measurement of the flux in these qubit loops 
can be made much more slowly.

Time-domain measurements
Spectroscopy is important for establishing that a given qubit is a func-
tional device, and it enables energy-level splitting to be measured as 
a function of relevant control parameters. But measurements in the 

Figure 4 | Quantronium. a, A quantronium circuit is depicted. The Cooper-
pair box is connected by way of two Josephson junctions to the detector 
Josephson junction, which has Josephson energy Ed

j (right), and by way 
of a capacitor (with gate capacitance Cg) to the static voltage bias Vg and 
the radio-frequency gate voltage Vrf that prepares the state of the Cooper-
pair box. The dashed lines enclose the qubit. Ib is the bias current of the 
detector junction, and Z is an engineered environmental impedance. The 
flux through the loop formed by the three Josephson junctions is controlled 
by an external bias circuit. The read-out is the phase δ across the two box 
junctions, measured by combining the bias current Ib with the circulating 
loop currents I0 or I1. (Panel reproduced, with permission, from ref. 12.) 
b, A micrograph of quantronium is shown. The Cooper-pair box and leads 
are depicted in blue, and the gate electrode in red. (In gold are normal metal 

films that are used to remove quasiparticles from the superconducting 
films.) (Image courtesy of D. Esteve, Commissariat à l’Énergie Atomique, 
Saclay, France.) c, A Josephson bifurcation amplifier (JBA) is depicted. In 
a JBA, a Josephson junction, represented by the nonlinear inductance Lj, 
is shunted with a capacitance C via a stray inductance LS; Irf is the radio-
frequency current bias. The dashed line separates the off-chip circuitry (left) 
from the on-chip circuitry (right). (Panel reproduced, with permission, from 
ref. 22.) d, The response curve (voltage V versus frequency ν) of the JBA 
driven at high radio-frequency current amplitude at a frequency slightly 
below resonance is shown, and the hysteresis that results from dynamical 
bifurcation is indicated (arrows). The red line shows the low-amplitude 
response of the JBA, and the green line shows the high-amplitude response; 
the dashed line indicates metastable states.
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time domain are also necessary to determine the dynamical behaviour 
of a qubit. These measurements involve manipulating the state of 
the qubit by using appropriate microwave pulses — which are also 
required to implement single-qubit gates for quantum computing. In 
broad terms, qubits are characterized by two times, named T1 and T2 by 
analogy with nuclear magnetic resonance (NMR) spectroscopy 27.

 
The 

relaxation time T1 
is the time required for a qubit to relax from the first 

excited state to the ground state; this process involves energy loss. The 
dephasing time T2 is the time over which the phase difference between 
two eigenstates becomes randomized. Theoretically, both relaxation 
and dephasing are described by weak coupling to the quantum noise 
produced by the environment27–29. This approach predicts that energy 
relaxation arises from fluctuations at the energy-level splitting fre-
quency of the two states in question. The dephasing rate, by contrast, 
has two contributions:

 1/T2 = 1/(2T1) + 1/τϕ  (5)

The first contribution arises from the relaxation process, and the second, 
‘pure dephasing’, arises from low-frequency fluctuations with exchange 
of infinitesimal energy. (The pure dephasing time is τϕ.)

The simplest way to measure relaxation is to irradiate the qubit with 
microwaves at the frequency corresponding to the energy-level splitting 
between the ground and first excited states for a time much greater than 
T1. After the pulse has been turned off, the qubit has an equal probability 
of being in either state; the probability p1 of its being in the excited state 
!1〉 subsequently decays with time t as exp(−t/T1). Measurements of p1 
as a function of t yield the value of T1. It should be emphasized that 
each measurement of p1 at a given time delay involves a large number of 
measurements, typically 104 or 105. T1 can vary from values of the order 
of 1 ns to many microseconds.

To understand the various pulse measurements, it is useful to con-
sider the Bloch sphere (Fig. 6a), which enables any arbitrary quantum 
superposition of the quantum states !0〉 and !1〉 to be considered as a 
vector. The states !0〉 and !1〉 point along the positive and negative z axis, 
respectively. The superpositions !0〉 ± !1〉 lie along the ± x axes, and the 
superpositions !0〉 ± i !1〉 along the ± y axes. Thus, a given point on the 
surface of the sphere defines a specific superposition of these states.

The Bloch sphere can be used to describe Rabi oscillations in a flux 
qubit. Microwaves are applied at the energy-level splitting frequency 
for the qubit for a time τ with the magnetic-field component along the 
y axis. During the pulse, the state vector rotates in the y–z plane about the 
x axis with the Rabi frequency νR, which is proportional to the microwave 

amplitude. After time τ, the state vector is at an angle 2πνRτ to the z axis. 
Subsequent measurements of the probability of the qubit being in the 
state !0〉 or !1〉 yield Rabi oscillations as a function of τ. An example is 
shown in Fig. 6b. Rabi oscillations are a convenient means of calibrating 
the amplitude of the magnetic-field component of the microwave field 
that is coupled to the qubit.

In measuring the dephasing time, it is crucial to distinguish T2 (equa-
tion (5)) — an intrinsic timescale for the decoherence of a single qubit —
from T2*, the result of an ensemble measurement. The ensemble is formed 
because experiments on a single qubit need to be carried out repeatedly 
so that sufficiently precise data are acquired. Even though the different 
measurements are nominally identical, slow fluctuations on the timescale 
of a single run result in a change in the operating conditions between runs. 
This reduces the observed coherence time to T2* (which is < T2).

T2* and T2 can be measured separately: T2*, which includes the effects 
of low-frequency noise, by using Ramsey fringes30; and T2, by using 
a spin-echo technique27, which eliminates certain low-frequency con-
tributions. To observe Ramsey fringes, a π/2 microwave pulse is first 
applied at a frequency fm — with amplitude calibrated from the Rabi 
oscillations — that tips the qubit state vector into the equatorial (x–y) 
plane. The vector precesses freely on the Bloch sphere around the static 
magnetic field B0, with a magnitude that decreases with time, owing to 
dephasing. After a variable time delay τd, a second π/2 microwave pulse 
brings the state vector to a point on the Bloch sphere that depends on 
both fm and τd. The subsequent measurement of the qubit state projects 
the vector onto either !0〉 or !1〉. Thus, a plot of the switching probabil-
ity versus τd for a given microwave frequency maps out the free evolu-
tion of the qubit. For a resonant pulse (fm = ν10), the free evolution and 
the microwave pulses are synchronized, and the measurement reveals 
a coherence amplitude that decays exponentially with characteristic time 
T2*. To map out T2* over a larger parameter space, the π/2 microwave 
pulses are detuned from ν10. Thus, the pulse and evolution are no longer 
synchronized, and oscillations — Ramsey fringes — are observed at a 
frequency νRamsey = ! fm − ν10 ! (Fig. 6c).

To remove the slow fluctuations that differentiate T2* from T2, a spin-
echo technique, analogous to that used in NMR, can be used. In this tech-
nique, a π pulse is applied at the midpoint in time between the two π/2 
pulses. The π pulse flips the qubit state vector to the opposite side of the 
equatorial plane; therefore, a fluctuation that initially caused the phase to 
advance now causes it to lag, and vice versa. Thus, at the time of the second 
π/2 pulse, the effects of fluctuations that occur on timescales longer than 
the overall measurement time are (ideally) completely cancelled out. An 
example is shown in Fig. 6d.
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Figure 5 | Phase qubits. a, The filled circles represent the probability p1 that 
the phase qubit occupies the first excited state versus microwave power P10 
at angular frequency ω10. The solid line is the theoretical prediction. The 
inset shows the pulse sequence; the microwaves at angular frequency ω10 
equalize the probability that the ground and excited states are occupied, 
and the microwaves at angular frequency ω21 cause the qubit to switch to 
the voltage state if the first excited state is occupied. (Panel reproduced, 
with permission, from ref. 13.) b, For zero-voltage operation, the Josephson 
junction of a phase qubit is shunted by a superconducting loop, coupled 

to a read-out SQUID, that allows static and pulsed fluxes to be applied. 
The dashed line indicates the components fabricated on the silicon chip, 
which is maintained at 25 mK. (Panel reproduced, with permission, from 
ref. 26.) c, The asymmetrical double-well potential of a phase qubit is 
shown. The qubit states are !0〉 and !1〉. The state !2〉 becomes occupied on 
the application of microwaves at frequency ω21 provided that the state !1〉 is 
occupied. The state !3〉, above !2〉, has no role in the read-out process. Dots 
in the right well indicate the intervening energy levels. (Panel reproduced, 
with permission, from ref. 26.)
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Measuring the times T1, T2 and T2* provides an important initial 
charac terization of qubit coherence. However, other factors such as 
pulse in accuracy, relaxation during measurement and more complex 
decoherence effects result in measurement errors. A more complete 
measure of a qubit is fidelity, a single number that represents the dif-
ference between the ideal and the actual outcome of the experiment. 
Determining the fidelity involves quantum-process tomography 
(a repeated set of state tomographies), which characterizes a quantum-
mechanical process for all possible initial states. In a Ramsey-fringe 
tomography experiment, Matthias Steffen et al.31

 
found a fidelity of 

~80%, where 10% of the loss was attributed to read-out errors and 
another 10% to pulse-timing uncertainty.

Decoherence 
Superconducting qubits are macroscopic, so — along the lines of 
Schrödinger’s cat — they could be expected to be very sensitive to 
de coherence. In fact, given the unique properties of the superconducting 
state, careful engineering has led to remarkable increases in decoherence 
times compared with those of early devices.

Ideally, each type of qubit is described by a single degree of freedom. 
The central challenge is to eliminate all other degrees of freedom. In broad 
terms, there are two classes of decohering element: extrinsic and intrinsic. 
Obvious extrinsic sources include electromagnetic signals from radio and 
television transmitters; these can generally be eliminated by using careful 
shielding and enough broadband filters. A more challenging extrinsic 
source to exclude is the local electromagnetic environment: for exam-
ple, contributions from the leads that are coupled to read-out devices or 
are used to apply flux or charge biases. These leads allow great flexibility 
in control of the system at the expense of considerable coupling to the 
environ ment. This issue was recognized in the first proposals of macro-
scopic quantum coherence and largely motivated the Caldeira–Leggett 
theory of quantum dissipation6. This theory maps any linear dissipation 
onto a bath of harmonic oscillators. The effects of these oscillators can 
be calculated from the Johnson–Nyquist noise that is generated by the 
complex impedance of the environment. In the weak-damping regime, 
both T1 and τϕ can be computed directly from the power spectrum of this 
noise, and then the impedance can be engineered to minimize decoher-
ence28,29. The experimental difficulty is to ensure that the complex imp-
edances ‘seen’ by the qubit are high over a broad bandwidth, for example, 

0–10 GHz. It is particularly difficult to avoid resonances over such a broad 
range of frequencies. Clever engineering has greatly reduced this source of 
decoherence, but it would be optimistic to consider that this problem has 
been completely solved.

The main intrinsic limitation on the coherence of superconducting 
qubits results from low-frequency noise, notably ‘1/f noise’ (in which 
the spectral density of the noise at low frequency f scales as 1/f α, where 
α is of the order of unity). In the solid state, many 1/f noise sources are 
well described by the Dutta–Horn model as arising from a uniform dis-
tribution of two-state defects32. Each defect produces random telegraph 
noise, and a superposition of such uncorrelated processes leads to a 1/f 
power spectrum. There are three recognized sources of 1/f noise. The 
first is critical-current fluctuations, which arise from fluctuations in the 
transparency of the junction caused by the trapping and untrapping of 
electrons in the tunnel barrier33. All superconducting qubits are subject 
to dephasing by this mechanism. The slow fluctuations modulate energy-
level splitting, even at the degeneracy point, so each measurement is 
made on a qubit with a slightly different frequency. The resultant phase 
errors lead to decoherence.

The second source of 1/f noise is charge fluctuations, which arise 
from the hopping of electrons between traps on the surface of the super-
conducting film or the surface of the substrate. This motion induces 
charges onto the surface of nearby superconductors. This decoherence 
mechanism is particularly problematic for charge qubits, except at the 
degeneracy point, where the qubits are (to first order) insensitive. If the 
value of Ec/Ej increases, however, the energy bands (Fig. 3c) become flat-
ter, and the qubit is correspondingly less sensitive to charge noise away 
from the degeneracy point. This mechanism underlies the substantially 
increased values of T2 in the transmon20.

The third source of 1/f noise is magnetic-flux fluctuations. Although 
such fluctuations were first characterized more than 20 years ago34, the 
mechanism by which these occur remained obscure until recently. It 
is now thought that flux noise arises from the fluctuations of unpaired 
electron spins on the surface of the superconductor or substrate35,36, but 
the details of the mechanism remain controversial. Flux noise causes 
decoherence in flux qubits, except at the degeneracy point, as well as in 
phase qubits, which have no degeneracy point. The increased value of 
T2 in quantronium results from its insensitivity to both flux noise and 
charge noise at the double degeneracy point.

Figure 6 | Qubit manipulation in the time 
domain. a, The Bloch sphere is depicted, 
with an applied static magnetic field B0 and 
a radio-frequency magnetic field Brf. Any 
given superposition of the six states shown is 
represented by a unique point on the surface 
of the sphere. b, Rabi oscillations in a flux 
qubit are shown. The probability psw that the 
detector (SQUID) switches to the normal state 
versus pulse length is shown, and the inset is a 
magnification of the boxed region, showing that 
the dense traces are sinusoidal oscillations. As 
expected, the excited-state population oscillates 
under resonant driving. (Panel reproduced, with 
permission, from ref. 40.) c, Ramsey fringes in 
a phase qubit are shown. Coherent oscillations 
of the switching probability p1 between two 
detuned π/2 pulses is shown as a function of 
pulse separation. (Panel reproduced, with 
permission, from ref. 31.) d, The charge echo in 
a Cooper-pair box is shown as a function of the 
time difference δt = t1 − t2, where t1 is the time 
between the initial π/2 pulse and the π pulse, 
and t2 is the time between the π pulse and the 
second π/2 pulse. The echo peaks at δt = 0. (Panel 
reproduced, with permission, from ref. 39.)
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In general, all three low-frequency processes lead to decoherence. 
They do not contribute to relaxation because this process requires an 
exchange of energy with the environment at the energy-level splitting 
frequency of the qubit, which is typically in the gigahertz range. How-
ever, there is strong evidence that charge fluctuations are associated with 
the high-frequency resonators that have been observed, in particular, in 
phase qubits37. Improvements in the quality of the oxide layers that are 
used in the junctions and capacitors have resulted in large reductions in 
the concentration of these high-frequency resonators38.

The strategy of operating a qubit at the optimum point, which was 
first carried out with quantronium but is now applied to all types of 
super conducting qubit (except for phase qubits), has been successful at 
increasing phase-coherence times by large factors. Further substantial 
improvements have resulted from the use of charge- or flux-echo tech-
niques39,40. In NMR, the spin-echo technique removes the inhomogeneous 
broadening that is associated with, for example, variations in magnetic 
field, and hence in the NMR frequency, over the sample. In the case of 
qubits, the variation is in the qubit energy-level splitting frequency from 
measurement to measurement. For some qubits, using a combination 
of echo techniques and optimum point operation has eliminated pure 
dephasing, so decoherence is limited by energy relaxation (T2* = 2T1). In 
general, however, the mechanisms that limit T1 are unknown, although 
resonators that are associated with defects may be responsible36,41. The 
highest reported values of T1, T2* and T2 are listed in Table 1.

Coupled qubits
An exceedingly attractive and unique feature of solid-state qubits in 
general and superconducting qubits in particular is that schemes can 
be implemented that both couple them strongly to each other and 
turn off their interaction in situ by purely electronic means. Because 
the coupling of qubits is central to the architecture of quantum compu-
ters, this subject has attracted much attention, in terms of both theory 
and experiment. In this section, we illustrate the principles of coupled 
qubits in terms of flux qubits and refer to analogous schemes for other 
superconducting qubits.

Because the flux qubit is a magnetic dipole, two neighbouring flux 
qubits are coupled by magnetic dipole–dipole interactions. The coupling 

strength can be increased by having the two qubits use a common line. 
Even stronger coupling can be achieved by including a Josephson junc-
tion in this line to increase the line’s self-inductance (equation (6), Box 1). 
In the case of charge and phase qubits, nearest-neighbour interactions 
are mediated by capacitors rather than inductors. Fixed interaction has 
been implemented for flux, charge and phase qubits42–45. These experi-
ments show the energy levels that are expected for the superposition of 
two pseudospin states: namely, a ground state and three excited states; 
the first and second excited states may be degenerate. The entanglement 
of these states for two phase qubits has been shown explicitly by means of 
quantum-state tomography 46. The most general description (including 
all imperfections) of the qubit state based on the four basis states of the 
coupled qubits is a four-by-four array known as a density matrix. Steffen 
et al.46 carried out a measurement of the density matrix; they prepared a 
system in a particular entangled state and showed that only the correct 
four matrix elements were non-zero — and that their magnitude was in 
good agreement with theory. This experiment is a proof-of-principle 
demonstration of a basic function required for a quantum computer. 
Simple quantum gates have also been demonstrated47,48.

Two flux qubits can be coupled by flux transformers — in essence 
a closed loop of superconductor surrounding the qubits — enabling 
their interaction to be mediated over longer distances. Because the 
superconducting loop conserves magnetic flux, a change in the state 
of one qubit induces a circulating current in the loop and hence a flux 
in the other qubit. Flux transformers that contain Josephson junctions 
enable the interaction of qubits to be turned on and off in situ. One such 
device consists of a d.c. SQUID surrounding two flux qubits49 (Fig. 7a). 
The inductance between the two qubits has two components: that of the 
direct coupling between the qubits, and that of the coupling through 
the SQUID. For certain values of applied bias current (below the critical 
current) and flux, the self-inductance of the SQUID becomes nega-
tive, so the sign of its coupling to the two qubits opposes that of the 
direct coupling. By choosing parameters appropriately, the inductance 
of the coupled qubits can be designed to be zero or even have its sign 
reversed. This scheme has been implemented by establishing the val-
ues of SQUID flux and bias current and then using microwave manip-
ulation and measuring the energy-level splitting of the first and second 
excited states50 (Fig. 7b). A related design — tunable flux–flux coupling 
mediated by an off-resonant qubit — has been demonstrated51, and 
tunable capacitors have been proposed for charge qubits52.

Another approach to variable coupling is to fix the coupling strength 
geometrically and tune it by frequency selection. As an example, we 
consider two magnetically coupled flux qubits biased at their degeneracy 
points. If each qubit is in a superposition of eigenstates, then its magnetic 
flux oscillates and the coupling averages to zero — unless both qubits 
oscillate at the same frequency, in which case the qubits are coupled. This 
phenomenon is analogous to the case of two pendulums coupled by a 
weak spring. Even if the coupling is extremely weak, the pendulums will 
be coupled if they oscillate in antiphase at exactly the same frequency.

Implementing this scheme is particularly straightforward for two 
phase qubits because their frequencies can readily be brought in and 
out of resonance by adjusting the bias currents37. For other types of qubit, 
the frequency at the degeneracy point is set by the as-fabricated param-
eters, so it is inevitable that there will be variability between qubits. As 
a result, if the frequency difference is larger than the coupling strength, 
the qubit–qubit interaction cancels out at the degeneracy point. Several 
pulse sequences have been proposed to overcome this limitation53–55, 
none of which has been convincingly demonstrated as yet. The two-
qubit gate demonstrations were all carried out away from the optimum 
point, where the frequencies can readily be matched.

On the basis of these coupling schemes, several architectures have 
been proposed for scaling up from two qubits to a quantum computer. 
The central idea of most proposals is to couple all qubits to a long central 
coupling element, a ‘quantum bus’56,57 (Fig. 8), and to use frequency selec-
tion to determine which qubits can be coupled56–60. This scheme has been 
experimentally demonstrated. As couplers become longer, they become 
transmission lines that have electromagnetic modes. For example, two 

Figure 7 | Controllably coupled flux qubits. a, Two flux qubits are shown 
surrounded by a d.c. SQUID. The qubit coupling strength is controlled 
by the pulsed bias current Ipb that is applied to the d.c. SQUID before 
measuring the energy-level splitting between the states !1〉 and !2〉. b, The 
filled circles show the measured energy-level splitting of the two coupled 
flux qubits plotted against Ipb. The solid line is the theoretical prediction, 
fitted for Ipb; there are no fitted parameters for the energy-level splitting. 
Error bars, ±1σ. (Panels reproduced, with permission, from ref. 50.) 
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Table 1 | Highest reported values of T1, T2* and T2

Qubit T1 (μs) T2* (μs) T2 (μs) Source

Flux 4.6 1.2 9.6 Y. Nakamura, personal communication

Charge 2.0 2.0 2.0 ref. 77

Phase 0.5 0.3 0.5 J. Martinis, personal communication 
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qubits have been coupled by placing them at the anti nodes of a standing 
wave on a stripline59–62. Coupling between specific pairs of qubits can result 
in a scalable architecture63. By first coupling a qubit to the standing-wave 
mode using frequency selection, a photon is excited and then stored after 
decoupling. Subsequently, a second qubit is coupled to the mode, and the 
photon transfers the quantum state to the second qubit.

Architectures for adiabatic quantum computers are the subject of 
intense research. Adiabatic quantum computing encodes the solution to 
a hard problem in the ground state of a qubit system and uses quantum 
physics to prepare that ground state efficiently. The ground state of a 
four-qubit system with tunable interactions has been mapped out64. 
It should, however, be noted that there is no proof that an adiabatic 
quantum computer will be faster than a classical computer.

Quantum optics on a chip
An important new direction in superconducting qubit research is based 
on analogy between superconducting circuits and the fields of atomic 
physics and quantum optics. So far, we have described only qubits as 
quantum objects, and the control fields and read-out signals have been 
treated as classical variables. Circuit QED, by contrast, addresses the 
quantum behaviour of the electromagnetic field, such as that of single 
photons. In previous sections, the discussion refers to a quantum field 
in a coherent state in the limit of large numbers of photons.

The key requirement for reaching the quantum limit of the elec-
tromagnetic field is that the zero-point fluctuation of a single 
mode — measured by the root mean square of the electric field, 
Erms = √ 〈E2〉vacuum — be strong enough to have an appreciable coupling 
strength g = dErms to the qubit electric dipole moment d. This require-
ment is met by increasing the amplitude of the field by creating a stand-
ing wave in a resonator and placing the qubit at one of the antinodes59 
(Fig. 8a). The resonator can be either a microstripline — an on-chip 
wave guide for microwaves — or a lumped circuit. In the first experi-
ment65, the resonator was tunable. The physics is closely related to cavity 
QED66, in which atoms couple to an optical field confined between two 
mirrors. A key difference is that in circuit QED, the ‘atom’ (that is, the 
superconducting qubit) does not move inside the cavity, so the ‘atom’–
field interaction has time to act without losing the ‘atom’. Together with 
the fact that g/# is larger than the rate of photon loss from the cavity, 
this difference allows the strong coupling limit of QED to be achieved 
in a relatively straightforward manner. The underlying reasons are that 
g is proportional to d (which, for a Cooper-pair box, is large, about 104 
atomic units) and that Erms is also large because of the increase in the 
electromagnetic field in the one-dimensional stripline.

Circuit QED can be operated in two distinct strong-coupling limits: the 
resonant regime, and the off-resonant dispersive regime. In the resonant 
regime, the qubit energy-level splitting is in resonance with the cavity 

Figure 8 | Circuit QED. a, The upper part of the panel 
depicts a microstrip cavity (blue) that contains a charge 
qubit (green) placed at an antinode of the electric field. 
The microstripline can be used as a quantum bus. The 
lower part depicts this circuit in a lumped circuit 
representation. (Panel reproduced, with permission, 
from ref. 59.) C0 is the capacitance of the coupling 
capacitor to the measurement electronics, and Cg is 
the capacitance of the coupling capacitor to the charge 
qubit. b, The open circles show the measured vacuum 
Rabi oscillations of a flux qubit coupled to a lumped 
resonator. The solid curve is a fit to the data. (Panel 
reproduced, with permission, from ref. 68.) c, An energy 
ladder of qubit ground and excited states combined 
with photon number n, !0, n〉 and !1, n〉 (dashed lines), is 
shown. With the cavity in resonance with the qubits, the 
states with zero photons split into linear combinations 
!±, 0〉 (solid lines), with an energy-level splitting g, and 
the states with one photon split into linear combinations 
!±, 1〉, with an energy-level splitting √2g. The red 
arrows indicate that if the system is initially in one of 
the states represented by dashed lines, it will perform 
Rabi oscillations between the qubit and the cavity. 
(Panel modified, with permission, from ref. 68.) d, An 
energy-band diagram (solid and dashed black lines) is 
shown as a function of applied flux for the measurement 
scheme that led to the results in b. The measurement 
pulse (π pulse) forces the system from the ground state 
(point 1) into a state with an excited qubit (point 2) 
(depicted in blue), which then puts the qubit and the 
cavity into resonance at point 3 (depicted in red). After 
the vacuum Rabi oscillation occurs, the system returns 
to point 2 or makes a coherent transition to point 4, 
where the qubit excitation is converted to a cavity 
photon. (Panel modified, with permission, from ref. 68.)
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frequency. In this regime, the combined states of the qubit and cavity can 
be written in the form !qubit state, photon number〉. On resonance, the 
qubit and cavity can exchange excitations without losing energy: that is, 
the energy of !1, n〉 is equal to the energy of !0, n + 1〉. The eigenstates of the 
system are thus superpositions of the form !±, n〉 = !1, n〉 ± !0, n + 1〉, with 
energies split by g√n, leading to the energy spectrum shown in Fig. 8c. 
This has a striking consequence: suppose that initially the qubit energy is 
not in resonance with the cavity (so the two are decoupled) and that the 
qubit is put into an excited state while the cavity is left in its vacuum state. 
When the qubit and the cavity in that state are suddenly coupled by using 
the procedure shown in Fig. 8d, the original state ceases to be an eigenstate 
and, instead, becomes an equal superposition of !+, 0〉 and !−, 0〉. After 
a time t, these acquire a relative phase of gt/# and manifest themselves as a 
coherent oscillation between !1, 0〉 and !0, 1〉, even though initially there 
was no photon in the cavity. These vacuum Rabi oscillations have been 
shown spectroscopically67 and in the time domain68 (Fig. 8b). 

The second case is the off-resonant dispersive regime. In this case, 
the qubit and cavity eigenstates are not entangled, and the two systems 
cannot share excitations. The mutual energies, however, are still cor-
related, because the energy-level splitting of the qubit depends on the 
cavity state, and vice versa. Consequently, the cavity can be used to read 
out the qubit and to couple qubits to each other59.

Circuit QED has been highly successful. So far, experimental progress 
has included attaining the strong coupling limit67, mapping out the dis-
crete nature of the quantized field69, generating single photons70 and 
coupling qubits using a bus61,62. These developments are leading to 
flexible quantum optics on a chip and open the door to a new domain 
of mesoscopic physics. Scalable architectures for quantum computers 
based on circuit QED have been proposed62.

These ideas have led to the recent demonstration of a superconducting 
qubit laser. The ‘atom’ — a charge qubit — is weakly coupled to a second 
lead. In appropriate bias conditions, a cyclic process takes place: Cooper 
pairs that enter the box are broken into two quasiparticles, which exit 
through the second lead. This cycle results in a significant overpopula-
tion of the first excited qubit state compared with the ground state — that 
is, a population inversion — and the generation of a laser action71.

Studies in atomic physics have produced superb techniques for 
actively cooling atoms. Because superconducting qubits operate at 
millikelvin temperatures, it might be thought that further cooling is 
unnecessary. But both the preparation of a high-fidelity initial state and 
the supply of qubits initialized to the ground state for error correction 
can be facilitated by active cooling. Cooling to 3 mK from an initial tem-
perature of 400 mK has been achieved by exciting the population of the 
excited state of a flux qubit to a higher excited state that is delocalized 
in a double-well potential, and then allowing the qubit to relax to the 
ground state72. ‘Sisyphus cooling’ has also been demonstrated73: in this 
cooling protocol, the energy that is supplied to the qubit from the heat 
bath is cyclically removed by the magnetic component of a suitably 
tailored microwave field.

Outlook
Quantum computing is a huge driving force for technological innov-
ation. Since macroscopic quantum coherence was shown, the progress 
in the design and operation of superconducting qubits has been remar-
kable. There is now a rich variety of devices that contain the three 
qubit types, either separately or in combination. Decoherence times 
have been increased from ~1 ns to ~10 µs, and single-shot and QND 
read-outs are close to being achieved. So, what challenges and prospects 
now lie ahead?

On a fundamental level, the next benchmark is to verify a violation 
of Bell’s inequality74. This inequality, which involves the outcomes of a 
combination of two-qubit measurements, is obeyed for any local theory 
but is violated for truly non-local physics such as quantum mechanics. 
A variation is the Leggett–Garg inequality75, which relates to tem poral 
correlations rather than to two-qubit correlations. One important aspect 
of quantum mechanics — entanglement — has been shown for super-
conducting qubits46, but the testing of whether Bell’s inequality is violated 

poses formidable technological challenges, particularly with respect to 
the fidelity of the measurement and the elimination of cross-talk. To 
make a Bell test convincing, the interaction between qubits needs to be 
switched off very accurately so that measurements are truly indepen-
dent. An even more convincing test would involve a true space-like 
separation: that is, measuring the read-out of two qubits in such a short 
time that no signal has been able to travel between them at the speed of 
light. Given the confines of a dilution refrigerator, however, it seems that 
it will not be possible to test superconducting qubits in this way.

Another important experiment involving entanglement will be to 
investigate whether teleportation of a state occurs76: that is, the transfer 
of a quantum state inside an entangled pair of states.

On the path to quantum computing, superconducting qubits are 
clearly among the most promising candidates. Nevertheless, the path is 
long, and there are quantitative technological obstacles to be overcome, 
notably increasing the decoherence time and improving the fidelity of 
the read-out. The key benchmark will be to demonstrate simple error 
correction. To achieve these grand goals will require technological 
progress, not the least in the elimination — or at least the reduction 
— of low-frequency noise. Two-qubit coherence — in particular, the 
question of whether noise processes are correlated between qubits — is 
largely unexplored.

Will there ever be a superconducting quantum computer? This ques-
tion cannot be answered today. The error thresholds discussed in fault-
tolerance research — 1 error in 10,000 operations being a typical, but 
by no means universal, benchmark — are daunting. However, fault-
tolerance research is an evolving field, and the computational protocols 
that have been discussed so far (which minimize the number of physical 
qubits and interactions required for a given algorithm) might not be 
best suited for superconducting qubits. Promising alternatives might 
be error-correction models with more generous thresholds, topological 
computing or other alternative computational models. Adiabatic quan-
tum computing could also be an alternative if it is proved to be faster 
than classical computing. While addressing these issues, researchers 
are also likely to gain further insight into many physical properties 
and processes. !
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