ЛАБОРАТОРНАЯ РАБОТА № 5.4**

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ДИФФУЗИИ ГАЗА ПРИ РАЗЛИЧНОМ ДАВЛЕНИИ

Цель работы: экспериментальное определение коэффициента диффузии водяных паров в воздухе.

Приборы и принадлежности: прибор для определения коэффициента диффузии, окулярный микрометр, линза, насос Комовского, стрелочный вакуумметр, шприц с водой, секундомер.

ВВЕДЕНИЕ

Диффузией называется явление проникновения двух соприкасающихся веществ друг в друга. В данной работе определяют коэффициент диффузии водяных паров в воздухе при испарении капли воды и спирта, считая диффузию стационарной.

Масса пара dm, диффундировавшего через площадку dS за время dt, определяется уравнением Фика:

$$dm = -D\frac{\partial \rho}{\partial r} \cdot dSdt, \qquad (1)$$

где ${\cal P}$ — градиент плотности насыщенного водяного пара, D — коэффициент диффузии.

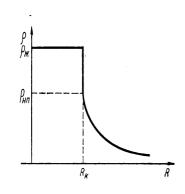
В стационарных условиях поток массы через полусферу произвольного радиуса r постоянен и равен

$$dm = -D\frac{\partial \rho}{\partial r} \cdot dSdt \ . \tag{2}$$

Отсюда следует, что

$$r^2 \frac{\partial \rho}{\partial r} = C_1 = const. \tag{3}$$

Из (3) можно найти градиент плотности пара:


$$\frac{\partial \rho}{\partial r} = \frac{C_1}{r^2} \,. \tag{4}$$

Подставив (4) в уравнение диффузии (1), получим:

$$dm = -D \cdot dS \cdot dt \frac{C_1}{r^2} \,. \tag{5}$$

Для определения постоянной C_1 запишем закон изменения плотности ρ паров от расстояния r. Интегрируя (4), получаем:

$$\rho(r) = \int \frac{C_1}{r^2} dr + C_2 = -\frac{C_1}{r} + C_2.$$
 (6)

Постоянную C_2 найдем из краевых условий задачи. Внутри капли плотность воды не изменяется с изменением r. На расстояниях r >> R, где R — радиус капли, плотность паров убывает согласно уравнению (6) (график изменения плотности изображен на рис. 1),

причем при $r \to \infty$ $\rho \to f \rho_{n.n.}$, где f - относительная влажность воздуха, $\rho_{n.n.}$ плотность насыщенных паров. Отсюда $C_2 = f \rho_{n.n.}$. В то же время при r = R плотность пара $\rho = \rho_{n.n.}$. Следовательно, $C_1 = -\rho_{n.n.}(1-f)R$, и в результате

$$\rho = \rho_{H,n.}(1-f)\frac{R}{r} + f\rho_{H,n.}; \qquad \frac{\partial \rho}{\partial r} = -\frac{\rho_{H,n.}(1-f)R}{r^2}.$$
 (7)

Подставляя это значение градиента плотности в (1), получаем:

$$dm = D \cdot dS \cdot dt \frac{\rho_{\scriptscriptstyle H.n.}(1-f)R}{r^2} \,. \tag{8}$$

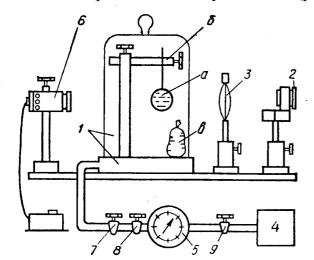
Если условия опыта стационарны, то масса паров, диффундировавших за время dt через сферическую поверхность с радиусом r, равна:

$$dm = D \cdot 4\pi r^2 \frac{\rho_{H.n.}(1-f)R}{r^2} dt = D \cdot 2\pi \rho_{H.n.}(1-f)Rdt.$$
 (9)

В то же время при уменьшении радиуса сферической капли от R до (R-dR) изменение её массы dm_{κ} будет равно:

$$dm_{\kappa} = \rho_{\kappa} 4\pi R^2 dR, \qquad (10)$$

где ho_{m} – плотность жидкости.


Учитывая, что убыль массы капли равна массе диффундировавшего пара: $dm_{\kappa} = -dm$, с помощью уравнений (9) и (10) можно связать коэффициент диффузии D со скоростью изменения радиуса капли R:

$$D = -\frac{\rho_{\infty}}{\rho_{\text{\tiny H.N.}}(1-f)} \cdot R \frac{dR}{dt} = \frac{\rho_{\infty}}{2\rho_{\text{\tiny H.N.}}(1-f)} \cdot \left| \frac{d(R^2)}{dt} \right|. \tag{11}$$

Из полученного выражения ясно, что для экспериментального определения D необходимо измерить изменение радиуса капли со временем при стационарных условиях.

ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ

Экспериментальная установка (рис. 2) состоит из стеклянного колокола с

вакуумной тарелкой 1, окулярного микрометра 2, линзы 3, насоса 4, вакуумметра 5, осветителя 6, трехходового крана 7 и двухходовых кранов 8 и 9.

Под колпаком помещается исследуемая капля жидкости a и поглотитель e. Капля размещается в

колечке, прикрепленном к держателю *б*. Давление воздуха под колпаком можно изменять с помощью крана 7 и насоса.

Для измерения диаметра капли служит оптическая система, состоящая из линзы 3 и окулярного микрометра 2. Отсчет времени производится по часам.

ИЗМЕРЕНИЯ И ОБРАБОТКА РЕЗУЛЬТАТОВ

Задание 1. Подготовка установки к работе.

Снимите стеклянный колокол. С помощью шприца подвесьте каплю к держателю. Добейтесь отчетливого изображения капли в окулярном микрометре.

Задание 2. Измерение диаметра испаряющейся капли.

Измерьте расстояние a от держателя капли до линзы линейкой. С помощью формулы линзы вычислите расстояние от линзы до действительного изображения капли и увеличение, даваемое линзой. Фокусное расстояние линзы F примите равным 11 см.

При атмосферном давлении измерьте диаметр d изображения капли с помощью окулярного микрометра и включите секундомер. Измеряйте диаметр d через равные последовательные промежутки времени. Сделайте 3–5 измерений. При атмосферном давлении измерения радиуса капли проводите через 7–10 мин.

Повторите измерения при другом давлении. Для этого подвесьте новую каплю воды и закройте ее колоколом, плотно притерев его к поверхности тарелки. Включите насос и откачайте воздух до 0,5 атм. Вновь сделайте 3–5 измерений радиуса испаряющейся капли с интервалом 3–5 мин. Повторите эксперимент при давлении 0,25 атм.

Зафиксируйте в протоколе температуру в помещении и относительную влажность воздуха f (она измеряется гигрометром). По таблице 1, прилагающейся к работе, определите плотность насыщенного пара $\rho_{\text{н.п.}}$ при данной температуре. Результаты всех измерений внесите в таблицу:

No	d, мкм	R, MKM	R^2 , M^2	<i>t</i> , c	Расстояние <i>a</i> = см			
		p = 1	атм	Увеличение Γ =				
1					у величение 1 —			
2					Температура: °С			
2					Относит. влажность $f = \%$			
					OTHOCHI. BILIMHOCIB $f = 70$			
	p = 0.5 atm				$\rho_{\text{\tiny H.\Pi.}} = \kappa_{\Gamma}/M^3$			
1								
2								

Задание 3. Расчет коэффициентов диффузии при различном давлении.

Для каждой серии измерений постройте график, откладывая по оси абсцисс время t, а по оси ординат — квадрат радиуса капли R^2 . Согласно формуле (11), зависимость $R^2(t)$ должна быть линейная. Пользуясь графиком, определите значение производной $\frac{d(R^2)}{dt}$ и ее погрешность. Рассчитайте коэффициент диффузии по формуле (11) при различных значениях давления.

Задание 4. Оценка длины свободного пробега молекул пара.

Зная комнатную температуру, вычислите среднюю скорость молекул водяного пара по формуле $\bar{v} = \sqrt{\frac{8}{\pi} \cdot \frac{RT}{M}}$, где R — молярная газовая постоянная, M — молярная масса. Из формулы $D = \frac{1}{3} \bar{v} \lambda$ найдите длину свободного пробега λ молекул водяного пара и спирта в воздухе для полученных значений коэффициента D.

При расчетах для плотности жидкости примите $\rho_{\text{ж}} = 10^3 \text{ кг/м}^3$.

СПРАВОЧНЫЕ ТАБЛИЦЫ

1. Плотность ρ насыщенного водяного пара при различных температурах

температура, °С Р.п.,		температура,°С	$\boldsymbol{\rho}_{\!\scriptscriptstyle{H.n.}},\Gamma/\mathrm{M}^3$	температура,°С	$\rho_{H.n.}$, Γ/M^3
	Γ/M^3				
13	11,4	17	14,5	21	18,3
14	12,1	18	15,4	22	19,4
15	12,8	19	16,3	23	20,6
16	13,6	20	17.3	24	21,8

2. Коэффициент диффузии *D* (при атмосферном давлении)

, , , , , , , , , , , , , , , , , , , ,		Температура, <i>t</i> °C	Коэффициент диффузии, <i>м²/сек</i>
Пары воды	Воздух	0	0,23·10 ⁻⁴
Пары этилового спирта	Воздух	0	0,10·10 ⁻⁴

ВОПРОСЫ И УПРАЖНЕНИЯ

- 1. Длина свободного пробега молекул зависит от концентрации газа n и сечения рассеяния $\sigma = \pi d^2$ (d эффективный диаметр молекул): $\lambda = \frac{1}{\sqrt{2}n\sigma}$. Подумайте, как следует изменить эту формулу, чтобы оценить длину свободного пробега молекул воды в воздухе.
- 2. Как зависит длина свободного пробега молекул от давления и температуры? При каком давлении средняя длина свободного пробега молекул воздуха равна 1 мм, если при атмосферном давлении она равна $6\cdot10^{-6}$ см?
- 3. Как зависит коэффициент диффузии газа от давления и температуры?
- 4. Исходя из дифференциального уравнения (11), рассчитайте, за какое время радиус капли уменьшится вдвое.
- 5. Пользуясь только соображениями размерностей, определите зависимость среднего диффузионного смещения частиц от времени.
- 6. Если запах пахучего вещества распространяется путем диффузии на расстояние 1 м за время t_1 , то за какое время t_2 он распространится на 10 метров?