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Abstract: Superconductors can enhance central effects in spintronics such as magne-
toresistance and spin injection and even create conceptually new types of phenomena
that have no counterpart in nonsuperconducting systems. Much like the key role that
has been played bymagnetic inhomogeneities in superconducting systems, recent de-
velopments suggest that spin-orbit coupling can play a similarly important part in
superconducting spintronics. Here, we discuss how spin-polarized Cooper pairs can
emerge from conventional s-wave BCS superconductors by utilizing hybrid structures
with spin-orbit coupling and also highlight some recent developments in the field of
nonequilibrium spin transport in superconductors. We will primarily discuss recent
findings in our research group which demonstrate how spin-orbit coupling leads to
novel phenomena such as spin-valve functionality with a single homogeneous ferro-
magnet and symmetry-protected proximity effects.Wewill also briefly cover results on
magnetization dynamics, spin supercurrents, the consequences of domain wall mo-
tion in Josephson junctions, and how spin-transfer torques are affected by the pres-
ence of superconducting correlations.
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ics, domain walls, heterostructures, proximity effects

14.1 Spin-orbit coupling from inversion symmetry breaking: novel
phenomena in SF structures

Creating and manipulating spin flow is the central feature of superconducting spin-
tronics [1]. In the presence of magnetically inhomogeneous structures, includingmul-
tilayers or ferromagnets with intrinsic textures such as domain walls, spin-polarized
Cooper pairs emerge [2–6] which carry both charge and spin supercurrents [7–11]. It
has been shown experimentally [12–14] that a dissipationless charge current can flow
through strong ferromagnets over distances that far exceed the penetration depth of
conventional superconducting order into magnetic materials. This occurs precisely
due to the creation of triplet Cooper pairs which are spin-polarized and insensitive
to the pair-breaking Zeeman field. Triplet Cooper pairs were very recently experimen-
tally observed spectroscopically inside a conventional superconductor [15, 16] and in
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the form of a paramagneticMeissner effect [17]. It has been realized that intrinsic spin-
orbit coupling arising frombroken inversion symmetry offers an alternative avenue for
obtaining the long-range (LR) triplet component [18, 19]. In that case the appearance
of the LR component depends on the relative direction of the axis of broken inver-
sion symmetry and the magnetization vector, with the LR triplet defined as having its
spin alignedwith themagnetization. This is in contrast to the short-ranged (SR) triplet
componentwhichhas its spin perpendicular to the field, and is thus vulnerable to pair
breaking just like conventional singlet Cooper pairs.

It would be impossible to comprehensively reviewall the activity in superconduct-
ing spintronics within this book chapter. Thus, we emphasize that this chapter is not
intended as a review of past and ongoing activity in the field. Instead, wewill primarily
discuss some specific results on spin transport in superconductors obtained recently
in our research group. The reader is assumed to have basic knowledge about the su-
perconductingproximity effect in superconductor/ferromagnet (SF) hybrid structures.
For a more detailed introduction to the underlying theory in this field, we refer to the
chapter by A. Buzdin in this book and the review articles [20, 21].

14.1.1 From singlet to triplet Cooper pairs

Spin mixing and spin rotation
We start by briefly reviewing the establishedmechanismwhich allows us to pass from
spinless S = 0, Sz = 0 singlet Cooper pairs to spin-polarized S = 1, Sz = ±1 triplet
Cooper pairs, following the presentation of [1]. This occurs via a two-step procedure
based on the concepts of spin mixing and spin rotation [22]. The wavefunction for a
spin-singlet Cooper pair can be represented as:

ψ0(k) = √1
2
(|↑, k⟩ |↓, −k⟩− |↓, k⟩ |↑, −k⟩) (14.1)

where the prefactor is due to normalization.Here, we have ignored for brevity the sym-
metrization with respect to k which is not essential to demonstrate the spin-mixing
process – it is easily reinstated by letting ψ0(k) → ψ0(k) + ψ0(−k) so that the total
wavefunction is invariant under k → (−k). When the electrons of a Cooper pair scat-
ter at a magnetic interface (such as in a superconductor/ferromagnet bilayer), they
experience not only a shift in momentum but also a spin-dependent shift νσ, σ =↑, ↓,
in the phase of the wavefunction. This is a result of the Zeeman field that splits ma-
jority and minority spin carriers. Such a spin-dependent phase shift may be written
as: |↑, k⟩ → eiν↑ |↑, −k⟩, |↓, k⟩ → eiν↓ |↓, −k⟩ . (14.2)

Applying this to ψ0 results in a new wavefunction which is a linear combination
of a spin-singlet and Sz = 0 spin-triplet wavefunction ΨSR ≡ √1/2(|↑, k⟩|↓, −k⟩+|↓, k⟩ |↑, −k⟩). The singlet and triplet parts of the wavefunction are weighted by
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cos ∆ν and sin ∆ν, respectively. Here, ∆ν ≡ ν↑ − ν↓. If there are no spin-dependent
phase shifts (∆ν = 0), the triplet component is absent. The next step is to create the
equal-spin triplet components Sz = ±1 which are insensitive to the pair-breaking ef-
fect of a Zeeman field as the spins of the electrons in the Cooper pair are aligned with
each other. Such long-ranged triplet correlations ΨLR ≡|↑, k⟩ |↑, −k⟩ (or |↓, k⟩ |↓, −k⟩)
can emerge by rotating or flipping one of the spins in the Sz = 0 triplet component. A
spatially varying magnetization serves as a source for spin rotation. This can be seen
by letting the quantization axis be aligned with the local magnetization direction:
consider an Sz = 0 triplet state in a part of the system where the magnetization, and
thus the quantization axis, is along the z-direction. However, in a part of the system
where the magnetization points in the x-direction, the same Sz = 0 triplet state would
look like a combination of the equal-spin pairing states Sz = ±1 from theperspective of
the new quantization axis. Yet another way to view this is in terms of spin-flip scatter-
ing. Assume that there exists two magnetic regions where the magnetizations are not
aligned. In that case, the second region acts as a spin-flip potential relative to the first
region and enables processes such as |↑, k⟩ →|↓, k⟩ and vice versa. Such processes
are in fact always present for instance in a scenario where local inhomogeneities of
the magnetic moment exist near an interface. The combination of spin mixing and
spin rotation processes then illustrate how the spin-singlet s-wave component of a
conventional superconductor may be converted into a long-range spin-triplet compo-
nent that is able to penetrate a long distance even into extreme environments such as
half-metallic ferromagnets which are fully spin polarized.

Spin-orbit coupling: precession and relaxation
The above picture represents the traditionally established view that magnetic inho-
mogeneities are a necessary prerequisite in order to generate long-ranged spin-triplet
superconducting correlations in ferromagnetic structures. However, recent develop-
ments [18, 23] have shown that there exists an alternative. If a superconducting ma-
terial lacks an inversion center (either due to its crystal structure or due to the geom-
etry of the setup) antisymmetric spin-orbit coupling such as Rashba type [24] will be
present. This leads to a mixing of excitations from the two spin bands in such a man-
ner that spin is no longer a conserved quantity. Instead, the long-lived excitations of
the system now belong to pseudospin bands that are momentum-dependent combi-
nations of the original spin species. As a consequence, the superconducting pairing
state in noncentrosymmetric superconductors will intrinsically be a mixture of sin-
glet and triplet pairing [25]. When pairing occurs between the quasiparticle excita-
tions of a simple Hamiltonian H featuring antisymmetric spin-orbit coupling such as
H = εk + gk ⋅ σ, where εk is the normal-state dispersion, σ is the Pauli matrix vector,
and gk = −g−k is a vector characterizing the spin-orbit coupling, the triplet part of the
superconductivity can be described by the relation d(k) ‖ g(k). The notation . . . is

Unauthenticated
Download Date | 10/10/17 9:41 AM



444 | 14 Spin-orbit interactions, spin currents, and magnetization dynamics

used for 2 × 2 matrices. We have defined:

d(k) ≡ [(∆↓↓(k) − ∆↑↑(k))/2, −i(∆↑↑(k) + ∆↓↓(k))/2, ∆↑↓(k)] . (14.3)

This is the triplet d-vector [26] which is intimately linked to the spin of the Cooper pair
state ⟨σ⟩ ∝ id(k) × d(k)∗. Besides its use for noncentrosymmetric superconductors,
the d-vector formalism is also suitable to describe the proximity-induced triplet corre-
lations in superconductor-ferromagnet structures. In this case, the anomalousGreen’s
functions fσσ play the role of the gaps ∆σσ(k) above. One may define a “proximity”
triplet vector f . The proximity effect between a noncentrosymmetric superconductor
and a homogeneous ferromagnet will thus produce both SR and LR triplet supercon-
ductivity inside the ferromagnetic region [23].

The generation of LR spin triplets via spin-orbit coupling andhomogeneous ferro-
magnetism has also been analyzed in terms of an analogy between, on the one hand,
D’yakonov–Perel [27] spin relaxation and precession of spins in nonsuperconducting
systems and, on the other hand, in diffusive systems with antisymmetric spin-orbit
coupling in contact with conventional s-wave superconductors (see [18, 19] for details
on this argument). In particular, one may compare the quasiclassical Usadel equa-
tion [28], which determines the superconducting pairing correlations quantified by
the anomalous Green’s function f in the presence of such spin-orbit interactions, with
the spin diffusion equation for normal state systems, which determines the spin den-
sity S. The comparison demonstrates that the spin-orbit interaction affects the com-
ponents of f and S in the same way,meaning that the samemechanismwhich causes
rotation of spin in diffusive normal metals can rotate the SR Cooper pairs to LR ones.

14.1.2 Spin-valve functionality with a single ferromagnet

An interesting consequence of the mechanism discussed in the previous section is
that it should be possible to control the critical temperature Tc of a superconductor
via the magnetization direction of one single ferromagnetic layer, which is not pos-
sible in the absence of SO coupling. In conventional SF structures, Tc is in fact inde-
pendent of the magnetization orientation of the F layer (as long as the orbital effect
of the stray field is neglected). By using a spin-valve setup such as FSF [29–33], it has
been demonstrated that the relative magnetization configuration between ferromag-
netic layers will tune Tc. In contrast, in the presence of SO coupling such a spin-valve
effect canbeobtainedwitha singlehomogeneous ferromagnet: by rotating themagne-
tization 90degrees, Tc goes fromamaximumto aminimum.The fact that only a single
ferromagnet is required to achieve this is of practical significance since it potentially
reduces the complexity associatedwith controlling the relativemagnetization orienta-
tion in multilayered hybrid structures. Following [34], we now demonstrate precisely
how this occurs.
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The type of antisymmetric SO coupling (linear in momentum) we will consider
here can be described by an SU(2) field A (a vector with 2×2 matrices as components)
whose mathematical form is determined by the material properties and the experi-
mental geometry. Such an SO coupling in solids can originate from a lack of inversion
symmetry in the crystal structure and can be of both Rashba and Dresselhaus type,
depending on the point group symmetry of the crystal [24, 35–37]. It is also known
that structural inversion asymmetry due to surfaces, either in the form of interfaces
with other materials or with vacuum, can give rise to antisymmetric SO coupling of
the Rashba type. In thin-film hybrids, the Hamiltonian for Rashba spin splitting is ex-
pressed by the cross product of the Pauli vector σ with the momentum k,

HR = − α
m (σ × k) ⋅ ẑ , (14.4)

where α is called the Rashba coefficient, and ẑ denotes the axis along which inversion
symmetry is broken. The Dresselhaus SO coupling is known to occur when the crys-
tal structure lacks an inversion center, such as in zinc blende structures. For a two-
dimensional (2D) electron gas (quantumwell) confined in the ẑ-direction the Dressel-
haus splitting becomes (to first order ⟨kz⟩ = 0)

HD = β
m (σyky − σxkx) , (14.5)

where β is the Dresselhaus coefficient. A potential 2D electron gas candidate would
be gallium arsenide, but the form (14.5) is a useful approximation for any 3D thin film
with strong confinement in one direction. Combining both interactions, we obtain the
Hamiltonian for a general Rashba–Dresselhaus SO coupling HRD = kx

m (ασy − βσx) −
ky
m (ασx − βσy). We can rewrite this by expressing the SO coupling as a background
SU(2) field, i.e., an object with both a vector structure in geometric space and a 2 × 2
matrix structure in spin space:

HRD ≡ −k ⋅ A/m . (14.6)

It follows that A = (βσx−ασy , ασx−βσy, 0) for the above example. Moreover, it is con-
venient to introduce a new notation for describing Rashba–Dresselhaus couplings,
which allows us to distinguish between the physical effects that derive from the mag-
nitude of the coupling and those that derive fromwhich type of SO coupling we have:
α ≡ −a sin χ, β ≡ a cos χ, where we will refer to a as the SO strength, and χ as the SO
angle. We see that χ = 0 corresponds to a pure Dresselhaus coupling, while χ = ±π/2
results in a pure Rashba coupling.

The effect of spin-orbit coupling on Tc in SF bilayers was recently determined
in [34] using quasiclassical theory and here we discuss some of the main findings.
We set the material parameters to N0λ = 0.2 for the superconductor (which is a stan-
dard choice for BCS superconductors), the exchange field h = 10∆0 for the ferromag-
net, and the interface parameter ζ = 3 (the ratio of the interface and bulk resistance)
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Fig. 14.1: Plot of the normalized critical temperature Tc/Tcs of an SF bilayer as a function of the ex-
change field orientation characterized by the in-plane angle θ, with LS/ξS = 0.55, LF/ξS = 0.2, and
a ξS = 2. The gray dashed line corresponds to χ = 0, the gray dashed line with dots is χ = −π/4,
whereas the black full line with dots is χ = +π/4. The figure is adapted from [34].

for both materials. In Figure 14.1 the change in Tc upon varying the direction of the
exchange field h ∼ cos θx̂ + sin θŷ in the xy-plane is shown. Interestingly, the criti-
cal temperature has extrema at |χ| = |θ| = π/4, where the extremum is a maximum
if θ and χ have the same sign, and a minimum if they have opposite signs. For the
choice of junction parameters chosen in Figure 14.1, this effect results in a large dif-
ference between the minimal and maximal critical temperature of nearly 60% as the
magnetization direction is varied. The dependence of Tc on the magnetization orien-
tation and the type of SO coupling can be explained from the linearized Usadel equa-
tions [34]. For certain angles θ, the SO coupling is able to rotate the Sz = 0 Cooper
pairs into Sz = ±1 pairs and thus open an additional “leakage” channel in the prox-
imity effect which in turn changes Tc. We will consider the properties of the linearized
Usadel equations with SO coupling for a related nanowire Josephson junction in the
next subsection. The variation of Tc upon changing the magnetization angle θ in the
present case of an SF bilayer turns out to be strongest in the case where the Rashba
and Dresselhaus magnitudes are similar. For either pure Rashba or pure Dresselhaus
coupling, Tc is only affected when the magnetization acquires an out-of-plane com-
ponent: pure in-plane rotations of h do not affect Tc in this scenario. The change in Tc
is typically much smaller for pure Rashba coupling with an out-of-plane component
of the magnetization compared with equal Rashba and Dresselhaus coupling.
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14.1.3 Pure triplet proximity effect protected via parity symmetry

Phase-sensitive density of states in Josephson junctions
The superconducting proximity effect is a phase-coherent phenomenon that can be
probed in e.g., Josephson junctions where the density of states (DOS) depends sen-
sitively [38] on the superconducting phase difference ϕ. Le Sueur et al. [39] reported
measurements for Josephson junctionswith a normalmetal (SNS) thatwere consistent
with the prediction [40] that the DOS changes from a finite minigap due to the super-
conducting correlations (ϕ = 0), with the minigap reducing as the phase difference is
increased, to that of a normal metal at ϕ = π. This can be understood intuitively, as
the proximity effect should be suppressed when the order parameter in each super-
conductor is equal in magnitude but opposite in sign, resulting in superconducting
correlations “averaging” to zero.

Remarkably, when SO coupling is present in a magnetic Josephson junction, the
opposite effect takes place as recently shown in [41]. The SO coupling in the junction
instead gives rise to a giant, triplet-induced proximity effect at ϕ = π. This is shown
in Figure 14.2, where the junction is oriented along the z-direction and the choice of
SO coupling vector is aligned perpendicular to the interfaces (Az ̸= 0) rather than
as below Equation (14.6). For concreteness and to give more transparent analytical
results, we set A = (0, 0, ασx − ασy). This choice corresponds e.g., to pure Rashba-
type coupling with broken inversion symmetry perpendicularly to a nanowire.

The physical origin of the giant proximity effect is that SO coupling forces the
triplet Cooper pairs to have the opposite parity symmetry compared to the singlet pairs
with respect to the center of the junction. As will be shown below, when ϕ = π the sin-
glet correlations are antisymmetric across the junction whereas the triplets are sym-
metric. Thismeans that the proximity effect survives even in the center of the junction
and is solely due to LR Cooper pairs. In other words, the experimentally tunable phase
difference may be utilized to remove the spin singlets and keep only triplets even with
a homogeneous exchange field. Previous attempts to separate spin-polarized Cooper
pairs from the singlet component have requiredmagnetic inhomogeneities, which can
be experimentally challenging to control. Thus, the inclusion of SO coupling repre-
sents a significant step forward in this direction. Moreover, since this prediction is
based solely on symmetry and that its spectroscopic fingerprint is virtually indepen-
dent of where the local density of states is measured in the system, it should be very
robust.

Let us first briefly consider the behavior of the proximity effect in an SFS junction
without SO coupling as a function of the phase difference. In this case the quasiclas-
sical Usadel equation [28] in the linearized regime reads

DF∂2z f± + 2iε± f± = 0 , (14.7)

where DF is the diffusion constant in the ferromagnet, ε± = ϵ ± hz and f± = ft ± fs
for energy ϵ, magnetization exchange field h, and singlet and Sz = 0 triplet anoma-

Unauthenticated
Download Date | 10/10/17 9:41 AM



448 | 14 Spin-orbit interactions, spin currents, and magnetization dynamics

Fig. 14.2: The proximity effect in a standard SNS Josephson junction (a) results in a minigap that
closes as the phase difference ϕ increases between the superconductors. The proximity effect in
the SFS junction with intrinsic SO coupling (b) results in a giant zero-bias peak in the density of
states when ϕ = π. (c) Left figure: The local density of states D(ϵ) at z = LF/2 for different values
of the phase difference ϕ between the superconductors of an SFS junction with spin-orbit coupling
A = (0, 0, ασx − ασy), setting the exchange field h = 10∆ŷ and the spin-orbit coupling magnitude
α = 0.4/LF. The giant triplet proximity effect at ϕ = π manifests as a large peak in D(ϵ) at ϵ = 0.
Right figures: A comparison with the standard SNS and SFS junctions without SO coupling is shown.
(d) The local density of states D(ε = 0) at z = LF/2 for a π-biased SFS junction with spin-orbit
coupling as a function of magnetization exchange field h = h∆ŷ and strength of spin-orbit coupling
αLF. In all cases, the axis of broken inversion symmetry producing the spin-orbit coupling is taken
to be perpendicular to the extension of the junction, i.e., for a nanowire setup. Figure is adapted
from [41].

lous Green’s functions fs and ft, respectively. The Usadel equation describes the diffu-
sion of the condensate into the adjacentmaterial, and the corresponding Kupriyanov–
Lukichev boundary conditions [42] at the superconducting interfaces take the form
ζLF∂zf± = ∓fBCSeiϕL at z = 0 and ζLF∂zf± = ±fBCSeiϕR at z = LF, where fBCS is the bulk
Bardeen–Cooper–Schrieffer [43] anomalous Green’s function in the superconductors,
LF is the length of the ferromagnet, and ζ is the interface parameter. ϕL and ϕR de-
note the respective superconductingphases. The solution in themiddle of the junction
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reads:
f± = ±fBCS cos(k±L/2)

ζLi sin(k±L) (eiϕR + eiϕL) , (14.8)

where k± = √2iε±/DF is the wavenumber. It follows that when the phase difference
ϕ = ϕL − ϕR = π, the superconducting proximity effect vanishes since f± = 0. This
holds for all energies and regardless of whether h = 0 or h ̸= 0. As this takes place
at ϕ = π both in SNS and SFS junctions, one might be tempted to conclude that this
is a robust phenomenon. However, we now proceed to show that in the presence of
spin-orbit interactions, this is no longer the case.

Symmetry-protected triplet proximity effect
To demonstrate the symmetry-protected triplet proximity effect, we follow [41] closely.
This effect can be established solely on symmetry arguments, making it independent
of the specific junction parameters employed in an experiment. To see this, wewill an-
alyze below the Usadel equation in the weak proximity effect limit when SO coupling
is present – its Ricatti-parametrized form valid for an arbitrarily large proximity effect
was derived in [34]. The nonvanishing triplet proximity effect in π-biased Josephson
junctions survives even if one includes modest components of the SO coupling field{Ax , Ay} ̸= 0. The origin and main features of the giant triplet proximity effect can
be identified analytically by considering the low-energy regime ε = 0 and setting the
exchange field to h = hẑ. The linearized coupled Usadel equations then read:

(∂2z − 4α2)fσσ + 4σα(1 − σi)∂zft − 4iσα2f−σ,−σ = 0 ,
DF∂2z fs + 2ihz ft = 0 ,

DF∂2z ft + 2ihz fs − 8DFα2ft+2DFα(1 − i)∂zf↓↓ − 2DFα(1 + i)∂zf↑↑ = 0 .

(14.9)

with σ =↑, ↓. At zero phase difference between the superconductors, the anomalous
Green’s function fs for the singlet Cooper pairs is a symmetric function with respect to
the middle of the junction. This can be seen from the general form of the solution of
fs and the boundary conditions, and is equivalent to what happens for conventional
SNS and SFS junctions. When the phase difference is equal to π, however, fs (and
thus necessarily its second derivative) is antisymmetric. When the SO coupling has a
component in the junction direction it necessarily introduces a first-order derivative
term. If we perform the operation z → (−z) on Equation (14.9), this means that the
function subject to the first-order differential must have the opposite symmetry of the
other terms, provided that it is not constant. We can now see explicitly what this en-
tails: the functions f↑↑ and f↓↓ must be symmetric around the middle of the junction
at ϕ = π, and it is clear that a nonzero component of the anomalous Green’s function
will remain at zero energy even in the π-biased junctionwhile the singlet component is
exactly equal to zero. The density of states at the Fermi level becomes in the linearized

Unauthenticated
Download Date | 10/10/17 9:41 AM



450 | 14 Spin-orbit interactions, spin currents, and magnetization dynamics

regime:
D(0) = 1 − |fs(0)|2/2 + |ft(0)|2/2 + |f↑↑(0)|2/4 + |f↓↓(0)|2/4 , (14.10)

and thus an experimental signature of this effect would be an enhanced zero-energy
density of states due to the triplets.

In Figure 14.2c we provide the spectroscopic profile upon varying the phase differ-
ence between the superconductors in an SFS junction with SO coupling, which high-
lights the emergence of a zero-energy peak in the density of states at ϕ = π. We have
here chosen an in-plane exchange field h = 10∆ŷ for ease of experimental applica-
tion, a bulk superconducting coherence length ξS = 30nm and SO coupling strength
α = 0.4/LF, i.e., normalized to the ferromagnet length LF, here chosen to be 15nm
such that the relevant quantity LF/ξS = 0.5. Similar behavior is observed for most of
the other choices of exchange field orientation and SO coupling strength. A compar-
ison with the standard SNS and SFS junctions without SO coupling is provided and
the giant proximity effect at ϕ = π is clearly seen to be related to the presence of SO
coupling. Since the singlet component fs vanishes when ϕ = π, the remaining fea-
tures are entirely due to the triplets and in this case due to the LR triplet component.
As a consequence, the result serves as a way to fully isolate the triplet correlations
regardless of the junction parameters in π-biased Josephson junctions. We note that
quantitatively, even when h ≫ ∆, the proximity effect and resulting enhancement of
the density of states displayed here is very large (∼ 26%)when compared with experi-
ments measuring the same quantity for superconductor-ferromagnet hybrids without
SO coupling [44, 45], where the deviation from the normal state is around 1%.

Although the analytical proof given above shows how 100% triplet Cooper pairs
are present in the middle of the junction, numerical simulations of the full proximity
effect equations show that this effect in fact turns out tobe virtually independent of the
distance from the superconducting interfaces: the spectroscopic peakoriginating from
the presence of spin-polarized Cooper pairs persists all the way up to the interfaces
and hardly changes throughout the junction [41]. Moreover, the spatial dependence
remains unaltered even for asymmetric junctions where one interface is up to twice as
transparent as the other (a ratio of barrier parameters ζ1/ζ2 = 2). This indicates that
the predicted effect should be very robust. In Figure 14.2we plot the dependence of the
density of states of the π-biased junction on the magnitude h of the exchange field h =
h∆ŷ and the SO coupling αLF, which is highly nonmonotonic in α. As the field strength
increases, a more narrow spectrum of SO coupling will generate a giant peak at zero
energy, with the optimal SO coupling decreasing slightly for higher field strengths.
Nevertheless, regardless of the values of h and α, a pure triplet state is induced in the
low-energy regime at ϕ = π.
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14.2 Controlling spin flow with superconductors

It is interesting to note that spin transport in superconductors [46–48] actually pre-
dated spin transport experiments innonsuperconductingmaterials [49]. This research
field has recently emerged as a potential avenue for enhancing and discovering new
phenomena in spintronics. Preliminary results are indeed encouraging, with experi-
ments demonstrating infinitemagnetoresistance in superconducting spin-valves [50],
strongly enhanced quasiparticle spin lifetimes [51], spin relaxation lengths [52], spin
Hall effects [53], and thermoelectric currents [54] compared to nonsuperconducting
structures.

14.2.1 Spin supercurrents

With regard to utilizing superconductors for spintronics purposes, the possibility of
creating spin supercurrents (flowing without dissipation) in ferromagnetic materi-
als [12] has earned the triplet Cooper pairs much attention. It is known that in the
presence of inhomogeneous magnetic order, e.g., intrinsically textured ferromagnets
likeHo [14, 55], ormultilayers with several ferromagnets [13], triplet supercurrents can
arise. This happens even when using conventional s-wave superconductors which
feature spinless Cooper pairs (we refer the reader to the chapter by M. Blamire in this
book for amuchmore detailed discussion on spin supercurrents froman experimental
perspective). However, it can be difficult to experimentally control the magnetization
direction of each of the individual layers when using large multilayered structures as
in [13] to create the dissipationless spin flow. Several works have studied how triplet
supercurrents can emerge in various types of structures including both weakly and
strongly polarized ferromagnets (see e.g., [7–9, 56–59]). At the same time, it would
be of interest if one could generate a spin supercurrent flowing in a normal (nonmag-
netic) metal by using a minimal amount of magnetic elements. The reason is that this
would potentially simplify the manner in which external control may be exerted on
the spin supercurrent and its properties. Below, we show an example of how this can
occur based on the findings of [60] where it was shown that a spin supercurrent can
flow through a normal metal carried by odd-frequency triplet Cooper pairs.

A schematic of the model heterostructure used for demonstrating the spin super-
current flow is shown in Figure 14.3. Themathematical framework takes the quasiclas-
sical theory of superconductivity [21, 61] in the diffusive limit, where the central object
of interest is the Green’s matrix function ǧ which is an 8×8matrix in Keldysh–Nambu
space. It is defined in terms of the retarded (R), advanced (A), and Keldysh (K) part

of the Green’s function: ǧ = (gR gK

0 gA
). In equilibrium, it is sufficient to consider the
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retarded part gR ≡ g, which may be parametrized and normalized as [62]:

g = (N(1 + γγ̃) 2Nγ−2Ñγ̃ −Ñ(1 + γ̃γ)) , g2 = 1 . (14.11)

Here, N = (1 − γγ̃)−1 and the ̃. . . operation means complex conjugation and reversal
of quasiparticle energy. The Ricatti matrices {γ, γ̃} are 2×2 matrices in spin space and
the Green’s function g satisfies the Usadel equation [28]:

D∂x(g∂xg) + i[ερ3, g] = 0 . (14.12)

Above, D is the diffusion coefficient of the normalmetal, ρ3 = diag(1, −1), and ε is the
quasiparticle energymeasured relative theFermi level. In order to account for themag-
netic insulators at the interfaces shown in Figure 14.3, one uses the spin-dependent
boundary conditions discussed in [63] and recently generalized to arbitrarily strong
polarization in [64]. The most important effect of the magnetic insulators is the spin-
dependent phase shifts experienced by quasiparticles as they scatter at the interface,

Fig. 14.3: A Josephson junction with magnetic insulators (MIs) inserted between the superconduc-
tors and the normal metal. The magnetic moments of the MIs on the left and right side of the junc-
tion, mL and mR, may be misaligned and an applied superconducting phase difference across the
junction drives both a charge and spin supercurrent. (a–d) Plot of the spin and charge supercurrents
in the system where ξS = 30 nm and a normalized temperature T/Tc = 0.02. The interface param-
eters are set to be equal, Gφ = 3 and ζ = 2, and the phase difference θ = π/2. In (a), we have
set d = 20 nm, ϕ = 0. In (b), we have d = 5 nm and ϕ = π/4, and in (c), we have d = 20 nm and
ϕ = π/4. The components of the spin supercurrents are mirror images of each other in (b) and (c) be-
cause of the choice of magnetic configuration of the insulators, ϕ = π/4. The charge supercurrent
is independent of ϕ, but changes sign when going from α = 0 to α = π, signalling a 0-π transition.
The normalization constant of the charge current is I0 = N0eDA/4 while for the spin currents it is
I0 = N0ℏDA/8. The contour plot in the bottom panel (d) is the charge supercurrent in the θ-α plane
using d = 20 nm, displaying a 0-π transition around α ≃ 0.2π (the dark green region corresponds to
the π-phase). Figure is adapted from [60].
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which are described by a parameter Gφ. The superconducting regions on the left and
right side of the junction are denoted gL and gR, and assumed to act as bulk reservoirs
such that

γ
j
= iσys/(1 + 1c)eiθj , γ̃

j
= −iσys/(1 + 1c)e−iθj , (14.13)

with j = {L, R}. We have introduced s = sinhΘ, c = coshΘ, with Θ = atanh(∆0/ε),
where ∆0 is the magnitude of the superconducting order parameter. The supercon-
ducting phase difference across the junction is defined as θ ≡ θR − θL (note that we
here use θ for the phase difference instead ofϕ as before, sinceϕ in the present system
characterizes the magnetization orientation of the interfaces, i.e., in the xy-plane).
Moreover, the angle α in this case denotes the misalignment between the two mag-
netic moments. For a metal of length d, the boundary conditions read 2dζLg∂xg =[gL, g] + iGL

φ[ML , g] at x = 0 and a similar one applies at x = d, where ζj = RB,j/RN
is the ratio between the normal-state barrier resistance on side j and the resistance
of the normal metal. The matrix Mj describes the orientation of the magnetization
of the magnetic insulator on side j. Experimentally, one would expect that the mag-
netic insulators will have exchange fields lying in the plane perpendicular to the tun-
neling direction due to shape anisotropy. The right interface magnetization is set to
MR = diag(σz , σz) whereas the left interface is allowed to have an arbitrary orienta-
tion, i.e.,ML = cos αdiag(σz, σz)+sinϕ sin αdiag(σy , −σy)+cosϕ sin αdiag(σx, σx). A
detailed analysis of how nonideal effects such as spin-flip scattering due to magnetic
impurities and spin-orbit impurity scattering influence the charge and spin supercur-
rent was reported in [60].

We proceed to discuss how the charge and spin supercurrents in the system are in-
fluenced by the presence of the ferromagnetic insulators. In the quasiclassical frame-
work, one finds:

IQ = N0eDA
4

∞∫
−∞

dεTr{ρ3(ǧ∂xǧ)K}, IνS = N0ℏDA
8

∞∫
−∞

dεTr{ρ3τν(ǧ∂xǧ)K} . (14.14)

We have introduced N0 as the density of states at the Fermi level in the normal state,
e is the electric charge, ℏ is the reduced Planck constant, and A is the interfacial con-
tact area. We also define the bulk superconducting coherence length ξS = √D/∆0. In
the weak proximity effect regime, it is possible to compute an analytical expression
for the supercurrents [60]. The charge supercurrent reads:

IQ = (IQ,0 + IQ,1 cos αGL
φGR

φ) sin θ , (14.15)

where IQ,0 and IQ,1 are lengthy expressions that depend on junction parameters such
as thewidth d, misalignment angle α, temperature T, and the interface transparencies
ζL/R. The charge supercurrent is thus independent of which orientation the magnetic
moments have in the xy-plane, ϕ. We see that the presence of magnetic insulators
coupled to the superconductors introduces a cos α-dependence on the supercurrent,
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which tunes its overall magnitude and also can change the quantum ground state
of the junction from 0 to π when IQ,1 cos αGL

φGR
φ = −IQ,0. Thus, 0-π transitions may

occur by changing α. As seen in Figure 14.3d, the charge supercurrent changes sign
at α ≃ 0.2π corresponding to the 0-π crossover, demonstrating that this is a robust
feature in the full proximity effect regime.

It turns out that there exists not only a superflow of charge in the system, but also
of spin. The spin supercurrent is polarized in the directionmL ×mR. For our setup, it
means that while IzS = 0, one has:

IxS = GL
φGR

φ sinϕ sin α(IS,0 + IS,1 cos θ) . (14.16)

It follows that the spin supercurrent vanishes if one only has one magnetic insulator,
in which case GL

φ or GR
φ is zero. Moreover, it is proportional to sin α, which shows that

it is also absent in the parallel (P) or antiparallel (AP) alignment (α = 0, π). For other
angles α, however, it is present. The coefficients {IS,0, IS,1} are purely real and vanish
when ∆ = 0, demonstrating that this spin supercurrent originates from the presence
of superconductivity. There exists a simple relation between the components of the
spin supercurrent in the xy-plane, IxS

IyS
= − sin ϕ

cosϕ . This spin supercurrent has several
interesting features. Firstly, it is conserved throughout the normal metal just like the
charge current. Secondly, it is long-ranged as it flows through a normal metal without
any exchangefieldwhichhas a pair-breaking effect onCooper pairs. Thirdly, it has one
component that is independent of the superconducting phase difference θ. The other
component goes like cos θ, meaning that the total spin supercurrent satisfies IxS(θ) =
IxS(−θ). Note that a pure spin current is invariant under time-reversal symmetry, θ →(−θ), unlike a charge supercurrent which changes sign under the same operation.

14.2.2 Enhanced spin lifetimes and relaxation lengths in superconductors

Whereas the first studies of spin imbalance in superconducting spin-valves assumed
that the spin lifetime in the superconducting state τs wasunaltered comparedwith the
normal state τn, experiments have since then demonstrated strongly enhanced quasi-
particle spin lifetimes in the superconductors. Yang et al. [51] reported spin lifetimes
in superconducting Al that exceeded their normal state values by a factor of 106. They
inferred this bymeasuring a tunnelmagnetoresistance due to spin imbalance thatwas
consistentwith precisely such a large spin lifetime. The spin-charge separation,which
we will discuss in more detail below, and reduced spin-orbit scattering rate near the
gap edge for quasiparticles in a superconductor leads to increased spin lifetimes com-
pared to the normal state due to their movement slowing down for E ≃ ∆ (we use E for
the quasiparticle energy here to more easily distinguish it from the normal-state band
dispersion εk). A key aspect of the work by Yang et al. was that the enhancement of
the spin lifetime in the superconductor relative to the normal state increases greatly
when taking into account impurity spin-orbit scattering [51]. When doing so, the rela-
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tive spin susceptibility χS/χN remains finite as T → 0. A treatment without spin-orbit
effects, in contrast, provides a considerably smaller increase of the spin lifetime in the
superconducting state [65].

Quasiparticles in a superconductor can be described by 4 × 1 spinors in particle-
hole and spin space. These excitations are in general mixtures of electron- and hole-
states, but are typically characterized as being electron- or hole-like depending on the
limiting value of the wavefunction for energies E ≫ ∆. An electron-like quasiparticle
with spin-↑ can be expressed as ψ = [u, 0, 0, v]Teiqex, where u = √ 1

2 [1 + √E2 − ∆2/E]
and v = √ 1

2 [1 − √E2 − ∆2/E]. For E ≫ ∆, u → 1, and v → 0. The wavenumber of

an electron-like excitation reads qe = √2m(μ + √E2 − ∆2) for a simple parabolical
normal-state dispersion relation εq = q2/2m∗ wherem∗ is the effectivemass. In order
to obtain information about the spin and charge content of these excitations, let us
introduce the operators:

Ŝ = ℏ
2 (σ 0

0 −σ∗) , Q̂ = −|e| (1 0
0 −1) , (14.17)

where |e| is the magnitude of the electron charge and σ is a vector with the Pauli spin
matrices. Calculating the expectation values for spin and charge using the wavefunc-
tion ψ above produces:

⟨Ŝ⟩ = (ℏ/2)ẑ, ⟨Q̂⟩ = −|e|√E2 − ∆2/E . (14.18)

Wesee thatwhile the spinof quasiparticles is independent of their energy, the effective
charge significantly depends on the excitation energy E: in particular, it vanishes near
the gap edge E → ∆. This is the crucial property of the excitations which leads to spin-
charge separation and longer spin lifetimes in superconductors. The group velocity
vg = ∂E

∂k = k
m∗

εk−μ
E of the excitation E = √(εk − μ)2 + ∆2 is also reduced at the gap edge

since E → ∆ requires (εk − μ) → 0. This causes scattering to occur less frequently so
that the lifetime increases.

When it comes to spin-current injection into superconducting spin-valves hosting
ferromagnet leads, the spin imbalance in the superconductor dependson themagneti-
zation configuration. We follow here the argument presented in [66]: let τs be the spin
relaxation time inside the superconductor while τt and τE are the time between two
tunneling events and the energy relaxation time for quasiparticles, respectively. If one
assumes that τE < τs < τt, thephysical scenario is that electrons tunnel into the super-
conductor from a ferromagnetic lead, keeping their spin orientation whilst there but
energetically relaxing into the equilibrium (Fermi) distribution function before leav-
ing the superconductor. When the superconductor has a smaller thickness than the
spin diffusion length, the spin-↑ and spin-↓ distribution functions for quasiparticles
will be spatially uniform and described by the Fermi function f(E), albeit with shifted
chemical potentials. This shift depends on whether the magnetization configuration
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of the spin-valve is parallel or antiparallel. In the P alignment, the spin conductances
Gσ are equal at both interfaces due to the symmetry of the setup. Consequently, there
is no net shift δμ in the chemical potential for the spin species σ and thus no spin
accumulation in the superconductor. This changes if the alignment is changed to AP:
the different density of states for spin-↑ and spin-↓ at the two interfaces produces im-
balanced spin currents and yields a net shift in the chemical potential for spins σ in-
side the superconductor. This is expressed mathematically as f↑(E) = f0(E − δμ) and
f↓(E) = f0(E+ δμ). By considering the self-consistency equation for the superconduct-
ing order parameter

1 = gN0

ωD∫
0

dεE−1(1 − f↑ − f↓) , (14.19)

one observes that the spin-discriminating shift in chemical potential plays the same
role as a Zeeman splitting μBH originating from an external field H. This is known
to cause a first-order phase transition at the Clogston–Chandrasekhar [67, 68] field
μBH = ∆0/√2. Here, ε is the normal-state band energy, g is the pairing potential caus-
ing superconductivity, N0 is the normal-state density of states at the Fermi level, μB is
the Bohr magneton, while ωD is the cut-off frequency for the bosons composing the
superconducting glue.

Using a different setup from Yang et al., by employing an intrinsic Zeeman split-
ting in the superconducting region via in-plane magnetic fields, Quay et al. [52]
demonstrated experimentally a nearly chargeless spin imbalance in superconducting
Al using a spin-valve setup with Co as the ferromagnetic material. Measuring the non-
local resistance due to diffusion of the spin imbalance signal yielded very different
timescales for spin and charge relaxation: 25 ns versus 3 ps. Moreover, their results in-
dicated a strongly enhanced spin lifetime in the superconducting state. A key reason
for the strong spin accumulationwhen the tunneling from an F electrode matched the
gap edge for one of the spin carriers was the intrinsic spin splitting of the density of
states. Similar conclusions were also reported by Hübler et al. [69].

The field of nonequilibrium spin transport in superconductors has very recently
seen two additional pivotal discoveries, namely the observation of a giant spin Hall
effect in a superconductor [53] and large thermoelectric currents in a Pauli-limited
superconductor [54]. It deserves special mention that the change in spin-relaxation
length λsf in the superconducting state compared to the normal state as one decreases
the temperature below Tc does depend on the origin of the spin-flip processes. For
spin-orbit scattering via impurities, λsf is the same both above and below Tc [65]. In
contrast, Poli et al. [70] observed a reduction of λsf by roughly an order of magnitude
in the superconducting state. This was explained in terms of spin-flip scattering orig-
inating from magnetic impurities [71]. The value of the spin-relaxation length was
obtained by nonlocal resistance measurements that detected the diffusion of the spin
imbalance originating from the spin injection point. Finally, we also note that spin ab-
sorption by superconductors with strong spin-orbit coupling has been demonstrated
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by Wakamura et al. [72], where the observed spin relaxation time was much larger in
the superconducting state of Nb than in its normal state.

It is clear that spin transport in superconductors offers several key advantages
compared to nonsuperconducting structures and we speculate that some of the most
important advances in the field of superconducting spintronics in the upcoming years
will be done precisely in the realm of nonequilibrium spin flow in superconducting
hybrid structures.

14.3 Magnetization dynamics and spin torques
in superconductors

By now, long-range triplet supercurrents propagating a distance ≫ ξF (with ξF being
the ferromagnetic coherence length) through strong or even half-metallic ferromag-
nets have been demonstrated by several groups. However, the fact that these currents
are spin-polarized is only inferred indirectly through these measurements via their
long range. Itwould be very interesting to obtainmore direct proof of themost interest-
ing quality of such triplet currents – their spin. In conventional spintronics, spin cur-
rents are responsible for phenomena such as spin-transfer torque and magnetization
switching. Observing these central effects induced via triplet supercurrents would di-
rectly prove their spin-polarized nature and represent a considerable advance toward
possible cryogenic applications. The study of magnetization dynamics in supercon-
ducting structures is at an early stage, especially from the experimental side (although
progress has recently beenmade [73]), whichmeans that there remainsmuch exciting
work to be done in this particular area of superconducting spintronics.

14.3.1 Domain wall motion in superconducting structures

Magnetic domain wall motion is a major research topic in spintronics as it provides
an innovative way of transmitting and storing information in a nonvolatile manner.
In [74], it was shown that domain wall motion in superconducting hybrid structures
can control whether or not the system resides in a dissipationless state by actually
switching on or off superconductivity. Enhancing supercurrents through the creation
of triplet Cooper pairs by utilizingmagnetic domainwalls was experimentally demon-
strated in [75]. To model a domain wall, one minimizes the free energy functional for
a ferromagnet by including the exchange stiffness and anisotropy:

F = ∫dx[A(∂xM)2/2 − KeasyM2
z + KhardM2

x ] . (14.20)

A is the exchange stiffness and Keasy and Khard are the anisotropy energies associ-
ated with the easy and hard axes of the magnetization, M. The result [76] is M(x) =
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M0[0, sin θ(x), cos θ(x)] where the parameter θ(x) determines the spatial profile of
the domain wall: θ(x) = 2 arctan{exp[(x − X)/λ]}, with λ = √A/Keasy being the do-
mainwall width. Themotion of the domainwall is described by the time-dependence
of its center-coordinate X = X(t). Inserting this magnetization profile into the equa-
tions of motion for the Green’s function (for instance the Usadel [28] equation in the
diffusive limit) enables us to calculate the supercurrent response of the system. In
the ballistic regime, one makes use of the microscopic Bogoliubov–de Gennes (BdG)
technique [98]. Determining the self-consistent ground state of the SFS system re-
quires a calculation of the free energy, F, whereafter the supercurrent can be found
by: jx = 2e(∂F/∂ϕ)/ℏ, where ϕ is again the superconducting phase difference.

Inorder tohighlight the interesting consequences of domainwallmotion in super-
conducting junctions, Linder andHalterman [74] begin by demonstrating the possibil-
ity of 0-π transitions triggered solely by the position of the wall. In Figure 14.4(a) and
(b) the critical current in the diffusive regime of transport is shown. Two different pa-
rameter sets have been used for the sake of showing that this effect does not just occur
for special, finely tuned parameters. The domain wall position in the ferromagnet is
denoted by X. In all plots, the transition is clearly seen. Figure 14.4 shows that the
domain wall movement is able to induce 0-π transitions for strong exchange fields.
In fact, one should expect to see 0-π oscillations induced by even smaller increments
of the domain wall position X as the exchange field is raised, precisely as seen when
comparing Figure 14.4a and b.We underline that the calculation is done for a scenario
where the system has relaxed to equilibriumwith the domainwall at position X in the
junction. Computing the supercurrent value versus X then corresponds to performing
multiple measurements of the current (yet within one single sample) with the domain
wall at rest in different positions. We later comment on how this can be accomplished
experimentally. It would be of great interest to perform a real-time calculation of the
domain wall propagation through the Josephson junction (although this is a rather
complex problem).

What is the physical origin of the influence of the domain wall on the supercon-
ducting state? This may bemost easily understood by first considering a limiting case
of a thin domainwall in the ballistic limit. In this case, the ferromagnetic region canbe
viewed as an effective bilayer of two oppositely aligned ferromagnets. Now, whether
the ground state is 0 or π is determined by the total phase shift accumulated as an
Andreev bound state carrying the supercurrent propagates through the ferromagnet.
This phase shift dependsonboth the lengthof the systemand, importantly, the texture
of the magnetization. For a system comprised of two ferromagnets with antiparallel
alignment, the phase shift is partially canceled by the two layers. In fact,when the two
domains have exactly the same width, one would expect the system to be practically
equivalent to an SNS system resulting in a 0-phase [78]. In contrast, if the layers are
allowed to have different thicknesses, the phase shift pickedup by the Andreev bound
state will allow for a π-state to be sustained as long as h and/or L are sufficiently large
to generate a π-phase difference as the bound state makes a full round-trip between
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Fig. 14.4: Left panels: In a ferromagnetic layer of width L, a domain wall is present and separates
two conventional s-wave superconductors. Inducing domain wall motion to a new position triggers
a change in the quantum ground state of the junction: a 0-π transition. Moreover, transporting the
domain wall changes the critical temperature Tc and may even reduce it to zero (middle figure), de-
stroying completely the superconducting order. The domain wall can be manipulated via an electric
current, external field, or spin-wave excitations and moved to specific locations by artificially tai-
lored pinning sites e.g., via geometrical notches in the sample. Right panel: Critical current for two
different parameter sets are shown in: (a) h/∆ = 8, λ/L = 0.05, L/ξ = 1.5 and (b) h/∆ = 30,
λ/L = 0.1, L/ξ = 1. We have used an interface parameter ζ = 4 (relatively low interface transparency
and a temperature T/Tc = 0.1. (c) Turning superconductivity on or off: Critical temperature for an SFS
junction as a function of domain wall position for several different exchange fields (see legend). It is
assumed here that λ/L = 0.02, dS = 0.95ξ , L/ξ = 1, and ZB = 0. (d) Critical temperature versus
domain wall position for an S/F bilayer. The same parameter values that were used in (c) have been
used apart from the superconductor width which was set to dS = ξ . Figure is adapted from [74].

the superconducting regions. Based on this picture, we are in a position to understand
why moving the domain wall will induce 0-π transitions. The net phase shift experi-
enced by the Andreev bound state as it propagates between the superconductors is
determined by the position of the domain wall. When the domain wall has a finite
width, the analogy to a bilayer breaks down since spin rotation takes place and amag-
netization component perpendicular to the easy axis exists close to the domain wall
center. It was verified in [74] that the domain wall position still determines whether
the junction is in a 0- or π-state in the case where the domain wall extends over a
large part of the junction. The position of the domain wall can also be used to con-
trol Tc, both in a Josephson junction setup and a bilayer (here shown in Figure 14.4c
and d for the ballistic limit), when the superconductor thickness is of order ξS. Con-
necting with the experimental arena, we note that weak exchange fields of order a
few ∆ (corresponding to ∼ 5meV) have been reported in weak PdNi ferromagnetic al-
loys [77]. Moreover, the bulk superconducting coherence length can exceed 100nm in
dirty bulk superconductors such as Al. The parameter sets used in Figure 14.4 are thus
accessible experimentally.
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It has been theoretically shown that spin-triplet superconducting correlations can
inducemagnetization dynamics and spin-transfer torques [79–83], and onemayby ex-
tension expect that domain wall motion in a Josephson junction can be induced by a
supercurrent-induced spin-transfer torque as well. The required current densities to
move domain walls are typically of order 104–105 A/cm2, which compare well with
the critical current density attainable in SFS junctions [84]. Once domain wall mo-
tion has been induced, artificially tailored pinning sites may be used to control where
the motion terminates. In turn, this induces a new ground-state configuration. This is
done experimentally by e.g., making geometrical notches at the desired locations of
the ferromagnet [85]. Regarding candidate materials for observation of the predicted
effects, onewould need two standard s-wave superconductors, such as Nb or Al, and a
magnetic region supporting a domain wall with a width of order 5−10nm. Suchmag-
netic textures are known to occur in thin magnetic films Pt/Co/AIOx, PtI(Co/Pt)n, and(Co/Ni)n (see e.g., [86]). It might also be possible to use standard ferromagnets such
as Fe, Co, Ni, and their alloys that typically feature domain walls which are several
tens and up to a hundred nanometers, if one is able to reduce the wall thickness by
reinforcing shape anisotropy in magnetic nanowires [87]. It is clear that domain wall
motion would necessitate a nonequilibrium supercurrent setup.

14.3.2 Magnetization switching and φ0-states in Josephson junctions

Several theoretical works have demonstrated that triplet supercurrents can indeed in-
duce spin-transfer torque switching [79, 80] and magnetization dynamics in the su-
perconducting state [81, 83, 88–90]. Furthermore, the influence of superconductivity
on spin-pumping effects have been theoretically investigated both in Josephson junc-
tions [91] and in SF bilayers [92]. The prediction of features such as φ0-states, which
have a single but arbitrary ground state can provide direct coupling between the su-
percurrent and themagneticmoment in the interstitial junctionmaterial [93], and sug-
gests many resources for spintronic manipulation.

Wehereprovideanexampleof howmagnetizationdynamics for a Josephson junc-
tion can be computed, considering an interstitial ferromagnetic trilayer. The geometry
is chosen so that the structure is positioned along the y-axis with interfaces that lie
in the x–z-plane. Let y = 0 be the interface between the left superconducting layer
and its proximate ferromagnet. Assuming large superconducting reservoirs with size
d ≫ ξS, these layers are characterized by their bulk superconducting gap ∆ and the
macroscopic phase difference across the junction, ϕ = ϕR − ϕL. In order to capture
the magnetization dynamics, we allow for an arbitrary direction of the magnetization
in the free layer and fix the orientation in the two hard magnetic layers to the z- and
x-axis, respectively. The three ferromagnetic layers j ∈ {1, 2, 3} are described by their
thickness Lj and themagnitudes of their exchange field hj . The role of the interface re-
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sistance is captured via an effective dimensionless parameter Z (see the seminal BTK-
paper [94]).

The rich physics involving supercurrent-induced magnetization reversal and the
appearance of a φ0-ground state are both intimately linked to chiral spin symmetry
breaking by the magnetization vectorsMj [95, 96]. This is quantified by a finite value
of the chirality vector:

χ = M1 ⋅ (M2 × M3) . (14.21)

Once χ ̸= 0, spin chirality symmetry is broken. It was argued in [97] that when this
happens, it induces an asymmetry between tunneling probabilities for left- and right-
ward motion at the interfaces even at zero phase difference. Because of this asymme-
try, a finite supercurrent can flow even at ϕ = 0. The starting point for the computa-
tionof the supercurrent-induceddomainwallmotion is themean-fieldBogoliubov–de
Gennes equations [98] describing quasiparticle propagation in these structures. The
free layermagnetization is allowed to take arbitrarydirections. This enables a study of
the supercurrent-induced dynamics of the magnetic order parameter of this layer. The
Andreev levels ε responsible for the supercurrent in the short-junction regime L ≪ ξ
will depend on the junction geometry, the U(1) superconducting phase gradient, and
the magnetization texture. When these are specified, the free energy F and the charge
supercurrent I are obtained via [99]:

F(ϕ) = −1β ∑
j
ln(1 + e−βεj), I(ϕ) = 2eℏ ∑

i
f(εi)∂εi∂ϕ , (14.22)

where f(ε) is the Fermi–Dirac distribution function and β = 1/kBT. There exists an
interesting co-dependence between the superconducting phase difference ϕ and the
noncollinearity of the magnetization vectors when it comes to determining the su-
percurrent I and the equilibrium magnetic torque τ, which was first noted in [79].
Considering for simplicity two monodomain ferromagnets with magnetizations that
are aligned with a relative angle θ between each other. In this system, it follows from
I = 2e

ℏ
∂F
∂ϕ and τ = ∂F

∂θ that:
∂I
∂θ = 2eℏ ∂τ

∂ϕ . (14.23)

Despite its compact form, the above equation contains a powerful result: if the su-
percurrent responds to a change in the magnetization orientation θ, then the torque
exerted on the magnetic order parameters is also sensitive to a change in the phase
difference ϕ. This is a basic principle enabling supercurrent-induced magnetization
dynamics in inhomogeneous SFS junctions. An important point worth emphasizing
is that a long-ranged triplet current does not induce magnetization dynamics in the
layer it is propagating in. The reason is simply that such a current is spin-polarized
along the magnetization direction and hence acts with no torque on the magnetic or-
der parameter. Instead, as recently shown in [100], there is a unique interference ef-
fect between long- and short-ranged Cooper pairs that give rise to different types of
superconductivity-induced magnetic torques.
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Once the free energy of the system is obtained from the Andreev levels, one can
derive the effective field Heff which couples to the magnetization:

Heff = − 1V ∂F
∂M . (14.24)

The supercurrent-induced magnetization dynamics in the free layer is determined by
solving the Landau–Lifshitz-Gilbert (LLG) equation [101]:

∂M
∂t

= −ζM × Heff + αM × ∂M
∂t

, (14.25)

where ζ is the gyromagnetic ratio and α is the Gilbert damping constant. So long as the
effectivefield is not completely alignedwith themagnetization, itwill exert a torqueon
it. Note that we are here considering a monodomain model for the soft ferromagnetic
layer, meaning that there exists no contribution from the spin stiffness term ∼ ∂2My

∂y2 .
However, we do include the influence of magnetic anisotropy via additional terms±KjM2

j , j ∈ {x, y, z} in the free energy where Kj are the anisotropy densities and the ±
sign determines the hard and easy axes of magnetization.

A generally valid expression for the Andreev bound-state (ABS) spectrum in the
system under consideration does not have an analytically manageable form. How-
ever, physical insight can be obtained in experimentally relevant limiting cases. For
instance, in the quasiclassical limit of a rather weak ferromagnet h/μ ≪ 1, one finds:

ε± = ∆0√1 −A cosϕ +BZ3(hy/h) sinϕ − C ± √D(ϕ) , (14.26)

where the coefficients A,B, C are independent of the phase difference ϕ. Instead,
they are functions of the system parameters such as length L, barrier Z, and exchange
field h. It should be noted that Equation (14.26) is valid for arbitrary interface trans-
parency Z. Interestingly, it follows from the above properties of the Andreev level [83]
that there will be a finite supercurrent at zero phase difference: the system is in a φ0-
state. Very recently, the first experimental evidence for such a Josephson junctionwas
put forth [97]. Note that the Andreev levels satisfy in general ε(ϕ) ̸= ε(−ϕ).

The existence of an anomalous current at zero phase difference is seen to require
two criteria to be fulfilled: 1) the presence of scattering barriers and 2) hy ̸= 0 in the free
F layer. The absence of either of these causes the supercurrent to revert to conventional
behavior. In the short-junction regime where the Andreev bound states constitute the
dominant contribution to the current (compared to the continuum current), barriers
at both ferromagnetic interfaces are needed to produce the anomalous current: with
either Z1 or Z2 set to zero, the sinϕ term in Equation (14.26) is absent. The fact that the
anomalous supercurrent only appears when hy ̸= 0 indicates that the presence of an
explicitly broken chiral spin symmetry is necessary. Interestingly, the direction of the
current is actually controlled by the specific chirality, i.e., the sign of hy. The ABS en-
ergies, the corresponding supercurrent, and the free energy for the trilayer Josephson
junction are shown in Figure 14.5.
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Having considered the equilibrium properties of the magnetically textured tri-
layer Josephson junction, we now look at the magnetization dynamics, for which the
LLG equation (14.25) is solved numerically. The main ingredient which makes this
possible is the effective field, which accounts for both the anisotropy terms and the
ABS energies. This particular approach is valid when the magnetization dynamics are
sufficiently slow compared to the rate at which the system relaxes to an equilibrium
state [102]. For the simulations shown in Figure 14.5, we set β1 = β2 = π/3, ∆ = 10−22 J,
μ0 = 10−6 H/m, |M0| = 105 A/m, and theGilbert dampingparameter is set to α = 0.02.
In each case, the LLG equation is solved numerically and the stable state that arises
when t → ∞ and how it depends on the superconducting phase difference is identi-
fied. The initial condition for themagnetization of the free layer is taken to be along its
easy anisotropy axis. Firstly, consider the case with anisotropy along the ŷ-direction
shown in Figure 14.5. The stable state (t → ∞) for each of the magnetization compo-
nents and the effect of varying the anisotropy strength K is shown in (a), (b), and (c)
of the bottom figure. The combined effect of exchange field andwidth of the ferromag-
netic layer β3 ∝ hL is shown in (d), (e), and (f), and the interface barrier transparency
Z is shown in (g), (h), and (i). Several features can be noted. Whereas the qualitative
behavior of the mx (right panel, left column) and mz (right panel, right column) com-
ponents are equivalent, displaying a symmetry around ϕ = π, the my (right panel,
middle column) component behaves differently. For some parameter regimes, we ob-
serve very fast oscillations in the value of the stable state as a function of the supercon-
ducting phase difference. The reason for this can be traced back to a relation between
the magnetization dynamics and the presence of an anomalous supercurrent in the
system, and is discussed in detail in [83].

14.3.3 Spin-transfer torques tunable via the superconducting phase

The phenomenon of spin-transfer torques is generating much interest in spintronics
since they involve the coupling between itinerant carriers (electrons or magnons) and
collective magnetic order parameters and has found use in both magnetic random
access memories and oscillator circuits [103, 104]. Spin-transfer torques result from
the transfer of spin angular momentum from the (spin) current to the magnetic order
parameter. While several works have considered spin transport and torques in het-
erostructures combining conventional s-wave superconductors with magnetic mate-
rials, much less is known about of how spin-transfer torques are manifested in mate-
rials which simultaneously display superconductivity and magnetism. This occurs in
so-called ferromagnetic superconductors: uranium-based heavy-fermion compounds
where superconductivity appears inside the magnetic part of the phase diagram. In
these systems, it was shown in [105] that the spin-transfer torques depend on the
phase of the superconducting pairing correlations. This can be utilized as an addi-
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Fig. 14.5: Top figure. (a,d): ABS energies and (b,e): free energy of the system versus superconduct-
ing phase difference. (c,f) Supercurrent-phase relation for the trilayered SFFFS structure. In all plots,
β1 = β2 = π/3. In (a,b,c), Z = 2 and the effect of different values of β3 is shown. For (d,e,f),
β3 = 15π/100 and the effect of a varying barrier potential Z is shown. Bottom figure. Stable mag-
netization state for t → ∞ when m3(t = 0) ‖ ̂y. The components of the magnetization are given
in the left (mx ), middle (my ), and right (mz) columns. For all panels, β1 = β2 = π/3. For (a,b,c):
β3 = 5π/100, Z = 0.5, and the effect of different values of the anisotropy constant K is illustrated.
For (d,e,f): Z = 0.5, K = 105, and the effect of altering the β3 parameter is shown. For (g,h,i):
β3 = 25π/100, K = 105, and the effect of different values of the barrier transparency Z is shown. K
is given in units of J/m3. Figure is adapted from [83].

tional way of controlling and detecting spin transport and magnetization dynamics
and we now discuss the underlying principles for this effect.

To model the coexistence of bulk superconductivity and ferromagnetism, as ex-
perimentally verified in UGe2 [106], URhGe [107], and UCoGe [108], we consider only
equal spin-pairing triplet superconductivity: singlet pairing would not be able to
survive the large Zeeman fields of order 70meV in UGe2 [106]. We first demonstrate
that the out-of-equilibrium spin transfer in ferromagnetic superconductors is qual-
itatively different from what happens in conventional ferromagnets. Normally, the
spin-transfer torque exerted on the magnetic order parameter is equal to the loss of
transverse spin current inside the ferromagnet. This absorption takes place over a
small distance from the interface region, typically of order a few Fermiwavelengths in
strong ferromagnets where the exchange field makes up a considerable fraction of the
Fermi level. In ferromagnetic superconductors, however, wefind that the spin-transfer
torque does not equal the loss of quasiparticle spin current. The reason for this may
be understood by analyzing the spin continuity equation. We start by introducing the
spin density S and the Hamiltonian H:

S = 1
2ψ

† (σ 0
0 −σ∗)ψ, H = (H0 ∆

∆∗ −H∗
0
) , (14.27)

where ℏ = 1 and H0 = −∇2/(2m) − μ − h ⋅ σ, ∆ = diag(∆↑ , ∆↓). Here, h is the exchange
field, σ is a vector of Pauli matrices, and ∆σ, σ =↑, ↓ are the superconducting order pa-
rameters for majority and minority spin carriers. The Hamiltonian (14.27) determines
the rate of change of the spin density:

∂tS + ∂iJ iS = Ssuper + τSTT , (14.28)

where we have defined

J iS = 1
2m Im{ψ†

1σ∂iψ1 + ψ†
2σ

∗∂iψ2} ,
Ssuper = −Im{ψ†

2∆
∗σψ1 − ψ†

1∆σ
∗ψ2} ,

τSTT = ψ†
1[σ × h]ψ1 − ψ†

2[σ∗ × h]ψ2

(14.29)
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and ψ1 and ψ2 are electron- and hole-like 2 × 1 spinors constituting the total wave-
function, i.e., ψ = (ψ1, ψ2)T.

The rate of change of the spin-density terms entering the spin-continuity equa-
tion of Equation (14.28) are the quasiparticle spin-current tensor JS (superscript i in-
dicating its spatial components in Equation (14.28)), the spin supercurrent carried by
the condensate Ssuper, and the spin-transfer torque exerted on the ferromagnetic or-
der parameter τSTT. The spin-transfer torque has a simple interpretation in the case of
stationary transport in a normal metal-ferromagnet system: it is the loss of the trans-
verse component of the spin current, ∂iJ iS = τSTT since deep inside the ferromagnet
only spins aligned with the local magnetization axis can exist. The total torque is∫ τSTT = JS(F) − JS(N) where JS(N) is the spin current at the N-F interface and JS(F)
is the spin current in the bulk of the ferromagnet. In metallic ferromagnets which
are in good electric contact with normal metals, the incoherence between the spin-up
and spin-down states within the ferromagnet results in the transverse components of
JS(F) vanishing at length scales larger than the transverse decoherence length. Thus,∫ τSTT = m × [m × JS(N)], which is well known [104].

In the present superconducting case, the situation becomes more complex. Since
the components of the wavefunction ψ1 and ψ2 contain contributions from electron-
and hole-like quasiparticles, Equation (14.28) shows that the torque is directly modi-
fied by superconducting correlations. In turn, these correlations are determined by the
coherence factors and depend explicitly on the superconducting U(1) phases associ-
ated with each of the order parameters ∆σ = |∆σ|eiϕσ in p-wave ferromagnetic super-
conductors. Consequently, the spin-transfer torque is sensitive to the superconduct-
ing phase. This should be viewed in contrast to e.g., the charge conductance which
is insensitive to the U(1) phase. The origin of this effect is that the torque acquires a
contribution from interference terms of the propagation of electron- and hole-like ex-
citations. Since these excitations have different U(1) superconducting phases due to
the spin-resolved condensate, the torque will depend explicitly on the internal phase
difference between the two spin condensates. This was analytically verified by direct
computation in [105]. It is important to note that since part of the spin current is car-
ried by the condensate via Ssuper, the loss of the quasiparticle spin current is not fully
compensated by the torque τSTT exerted on the ferromagnetic order parameter.

It follows from the above discussion that the spin-transfer torque is qualitatively
different in ferromagnetic superconductors as compared to ferromagnets, because of
the presence of particle-hole interference of the quasiparticle waves which is unique
in the superconducting state: it vanishes when ∆σ → 0. More specifically, the injected
spin current causes transmission of both electron-like and hole-like quasiparticles
into the superconductor with weight denoted u and v, respectively. The interference
between two electron-like waves (or two hole-like waves) gives rise to the usual spin-
transfer torque oscillating on the length scale λh. In addition, however, there are ex-
tra terms compared to the nonsuperconducting case proportional to u∗v which repre-
sent particle-hole interference. This also gives rise to a different length scale than the
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one relevant for conventional spin-transfer torque since hole-like waves have oppo-
site momentum relative to their group velocity. Consequently, they interfere with the
electron-likewaves in away that cancels out the exchange-field dependence on the os-
cillation length. A unique aspect of the spin-transfer torque acting on a ferromagnetic
superconductor is that the torque itself might be able to rotate the superconducting or-
der parameter [109] due to the coupling between it and the local magnetization. The
latter, having a spin-triplet symmetry, is characterized by the so-called dk-vector for-
malism [26]. For a sufficiently large torque acting on the magnetic order parameter,
one could expect the superconducting order parameter to start rotating in spin space
aswell due to the coupling ⟨S⟩⋅M between the spins of the Cooper pairs ⟨S⟩ ∝ idk×d∗

k
and the magnetizationM.

The fact that the spin-transfer torque depends on the difference ϕ = ϕ↑ − ϕ↓
between the spontaneously broken U(1) phases of the superconducting order param-
eters ∆σ may be understood as follows. For longitudinally polarized spin currents, the
spin supercurrent is carriedby the condensate with phaseϕ↑ and the condensate with
phase ϕ↓ separately (no superposition occurs). This changes when a transverse spin
current is injected as in the present case, with a spin polarization at an angle θ with
respect to the magnetic order parameter. This corresponds to a noncollinear superpo-
sition of quasiparticles from the two spin branches of the condensate. Consequently,
the phase difference appears in the expression for the spin-transfer torque, offering a
possible experimental probe for the relative phase difference ϕ.
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